@article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @misc{ArnisonBibbBierbaumetal.2013, author = {Arnison, Paul G. and Bibb, Mervyn J. and Bierbaum, Gabriele and Bowers, Albert A. and Bugni, Tim S. and Bulaj, Grzegorz and Camarero, Julio A. and Campopiano, Dominic J. and Challis, Gregory L. and Clardy, Jon and Cotter, Paul D. and Craik, David J. and Dawson, Michael and Dittmann-Th{\"u}nemann, Elke and Donadio, Stefano and Dorrestein, Pieter C. and Entian, Karl-Dieter and Fischbach, Michael A. and Garavelli, John S. and Goeransson, Ulf and Gruber, Christian W. and Haft, Daniel H. and Hemscheidt, Thomas K. and Hertweck, Christian and Hill, Colin and Horswill, Alexander R. and Jaspars, Marcel and Kelly, Wendy L. and Klinman, Judith P. and Kuipers, Oscar P. and Link, A. James and Liu, Wen and Marahiel, Mohamed A. and Mitchell, Douglas A. and Moll, Gert N. and Moore, Bradley S. and Mueller, Rolf and Nair, Satish K. and Nes, Ingolf F. and Norris, Gillian E. and Olivera, Baldomero M. and Onaka, Hiroyasu and Patchett, Mark L. and Piel, J{\"o}rn and Reaney, Martin J. T. and Rebuffat, Sylvie and Ross, R. Paul and Sahl, Hans-Georg and Schmidt, Eric W. and Selsted, Michael E. and Severinov, Konstantin and Shen, Ben and Sivonen, Kaarina and Smith, Leif and Stein, Torsten and Suessmuth, Roderich D. and Tagg, John R. and Tang, Gong-Li and Truman, Andrew W. and Vederas, John C. and Walsh, Christopher T. and Walton, Jonathan D. and Wenzel, Silke C. and Willey, Joanne M. and van der Donk, Wilfred A.}, title = {Ribosomally synthesized and post-translationally modified peptide natural products overview and recommendations for a universal nomenclature}, series = {Natural product reports : a journal of current developments in bio-organic chemistry}, volume = {30}, journal = {Natural product reports : a journal of current developments in bio-organic chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0265-0568}, doi = {10.1039/c2np20085f}, pages = {108 -- 160}, year = {2013}, abstract = {This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.}, language = {en} } @article{WarringtonBeaumontHorikoshietal.2019, author = {Warrington, Nicole and Beaumont, Robin and Horikoshi, Momoko and Day, Felix R. and Helgeland, {\O}yvind and Laurin, Charles and Bacelis, Jonas and Peng, Shouneng and Hao, Ke and Feenstra, Bjarke and Wood, Andrew R. and Mahajan, Anubha and Tyrrell, Jessica and Robertson, Neil R. and Rayner, N. William and Qiao, Zhen and Moen, Gunn-Helen and Vaudel, Marc and Marsit, Carmen and Chen, Jia and Nodzenski, Michael and Schnurr, Theresia M. and Zafarmand, Mohammad Hadi and Bradfield, Jonathan P. and Grarup, Niels and Kooijman, Marjolein N. and Li-Gao, Ruifang and Geller, Frank and Ahluwalia, Tarunveer Singh and Paternoster, Lavinia and Rueedi, Rico and Huikari, Ville and Hottenga, Jouke-Jan and Lyytik{\"a}inen, Leo-Pekka and Cavadino, Alana and Metrustry, Sarah and Cousminer, Diana L. and Wu, Ying and Thiering, Elisabeth Paula and Wang, Carol A. and Have, Christian Theil and Vilor-Tejedor, Natalia and Joshi, Peter K. and Painter, Jodie N. and Ntalla, Ioanna and Myhre, Ronny and Pitk{\"a}nen, Niina and van Leeuwen, Elisabeth M. and Joro, Raimo and Lagou, Vasiliki and Richmond, Rebecca C. and Espinosa, Ana and Barton, Sheila J. and Inskip, Hazel M. and Holloway, John W. and Santa-Marina, Loreto and Estivill, Xavier and Ang, Wei and Marsh, Julie A. and Reichetzeder, Christoph and Marullo, Letizia and Hocher, Berthold and Lunetta, Kathryn L. and Murabito, Joanne M. and Relton, Caroline L. and Kogevinas, Manolis and Chatzi, Leda and Allard, Catherine and Bouchard, Luigi and Hivert, Marie-France and Zhang, Ge and Muglia, Louis J. and Heikkinen, Jani and Morgen, Camilla S. and van Kampen, Antoine H. C. and van Schaik, Barbera D. C. and Mentch, Frank D. and Langenberg, Claudia and Scott, Robert A. and Zhao, Jing Hua and Hemani, Gibran and Ring, Susan M. and Bennett, Amanda J. and Gaulton, Kyle J. and Fernandez-Tajes, Juan and van Zuydam, Natalie R. and Medina-Gomez, Carolina and de Haan, Hugoline G. and Rosendaal, Frits R. and Kutalik, Zolt{\´a}n and Marques-Vidal, Pedro and Das, Shikta and Willemsen, Gonneke and Mbarek, Hamdi and M{\"u}ller-Nurasyid, Martina and Standl, Marie and Appel, Emil V. R. and Fonvig, Cilius Esmann and Trier, Caecilie and van Beijsterveldt, Catharina E. M. and Murcia, Mario and Bustamante, Mariona and Bon{\`a}s-Guarch, S{\´i}lvia and Hougaard, David M. and Mercader, Josep M. and Linneberg, Allan and Schraut, Katharina E. and Lind, Penelope A. and Medland, Sarah Elizabeth and Shields, Beverley M. and Knight, Bridget A. and Chai, Jin-Fang and Panoutsopoulou, Kalliope and Bartels, Meike and S{\´a}nchez, Friman and Stokholm, Jakob and Torrents, David and Vinding, Rebecca K. and Willems, Sara M. and Atalay, Mustafa and Chawes, Bo L. and Kovacs, Peter and Prokopenko, Inga and Tuke, Marcus A. and Yaghootkar, Hanieh and Ruth, Katherine S. and Jones, Samuel E. and Loh, Po-Ru and Murray, Anna and Weedon, Michael N. and T{\"o}njes, Anke and Stumvoll, Michael and Michaelsen, Kim Fleischer and Eloranta, Aino-Maija and Lakka, Timo A. and van Duijn, Cornelia M. and Kiess, Wieland and Koerner, Antje and Niinikoski, Harri and Pahkala, Katja and Raitakari, Olli T. and Jacobsson, Bo and Zeggini, Eleftheria and Dedoussis, George V. and Teo, Yik-Ying and Saw, Seang-Mei and Montgomery, Grant W. and Campbell, Harry and Wilson, James F. and Vrijkotte, Tanja G. M. and Vrijheid, Martine and de Geus, Eco J. C. N. and Hayes, M. Geoffrey and Kadarmideen, Haja N. and Holm, Jens-Christian and Beilin, Lawrence J. and Pennell, Craig E. and Heinrich, Joachim and Adair, Linda S. and Borja, Judith B. and Mohlke, Karen L. and Eriksson, Johan G. and Widen, Elisabeth E. and Hattersley, Andrew T. and Spector, Tim D. and Kaehoenen, Mika and Viikari, Jorma S. and Lehtimaeki, Terho and Boomsma, Dorret I. and Sebert, Sylvain and Vollenweider, Peter and Sorensen, Thorkild I. A. and Bisgaard, Hans and Bonnelykke, Klaus and Murray, Jeffrey C. and Melbye, Mads and Nohr, Ellen A. and Mook-Kanamori, Dennis O. and Rivadeneira, Fernando and Hofman, Albert and Felix, Janine F. and Jaddoe, Vincent W. V. and Hansen, Torben and Pisinger, Charlotta and Vaag, Allan A. and Pedersen, Oluf and Uitterlinden, Andre G. and Jarvelin, Marjo-Riitta and Power, Christine and Hypponen, Elina and Scholtens, Denise M. and Lowe, William L. and Smith, George Davey and Timpson, Nicholas J. and Morris, Andrew P. and Wareham, Nicholas J. and Hakonarson, Hakon and Grant, Struan F. A. and Frayling, Timothy M. and Lawlor, Debbie A. and Njolstad, Pal R. and Johansson, Stefan and Ong, Ken K. and McCarthy, Mark I. and Perry, John R. B. and Evans, David M. and Freathy, Rachel M.}, title = {Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {EGG Consortium}, issn = {1061-4036}, pages = {804 -- +}, year = {2019}, abstract = {Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.}, language = {en} } @article{TiegsCostelloIskenetal.2019, author = {Tiegs, Scott D. and Costello, David M. and Isken, Mark W. and Woodward, Guy and McIntyre, Peter B. and Gessner, Mark O. and Chauvet, Eric and Griffiths, Natalie A. and Flecker, Alex S. and Acuna, Vicenc and Albarino, Ricardo and Allen, Daniel C. and Alonso, Cecilia and Andino, Patricio and Arango, Clay and Aroviita, Jukka and Barbosa, Marcus V. M. and Barmuta, Leon A. and Baxter, Colden V. and Bell, Thomas D. C. and Bellinger, Brent and Boyero, Luz and Brown, Lee E. and Bruder, Andreas and Bruesewitz, Denise A. and Burdon, Francis J. and Callisto, Marcos and Canhoto, Cristina and Capps, Krista A. and Castillo, Maria M. and Clapcott, Joanne and Colas, Fanny and Colon-Gaud, Checo and Cornut, Julien and Crespo-Perez, Veronica and Cross, Wyatt F. and Culp, Joseph M. and Danger, Michael and Dangles, Olivier and de Eyto, Elvira and Derry, Alison M. and Diaz Villanueva, Veronica and Douglas, Michael M. and Elosegi, Arturo and Encalada, Andrea C. and Entrekin, Sally and Espinosa, Rodrigo and Ethaiya, Diana and Ferreira, Veronica and Ferriol, Carmen and Flanagan, Kyla M. and Fleituch, Tadeusz and Shah, Jennifer J. Follstad and Frainer, Andre and Friberg, Nikolai and Frost, Paul C. and Garcia, Erica A. and Lago, Liliana Garcia and Garcia Soto, Pavel Ernesto and Ghate, Sudeep and Giling, Darren P. and Gilmer, Alan and Goncalves, Jose Francisco and Gonzales, Rosario Karina and Graca, Manuel A. S. and Grace, Mike and Grossart, Hans-Peter and Guerold, Francois and Gulis, Vlad and Hepp, Luiz U. and Higgins, Scott and Hishi, Takuo and Huddart, Joseph and Hudson, John and Imberger, Samantha and Iniguez-Armijos, Carlos and Iwata, Tomoya and Janetski, David J. and Jennings, Eleanor and Kirkwood, Andrea E. and Koning, Aaron A. and Kosten, Sarian and Kuehn, Kevin A. and Laudon, Hjalmar and Leavitt, Peter R. and Lemes da Silva, Aurea L. and Leroux, Shawn J. and Leroy, Carri J. and Lisi, Peter J. and MacKenzie, Richard and Marcarelli, Amy M. and Masese, Frank O. and Mckie, Brendan G. and Oliveira Medeiros, Adriana and Meissner, Kristian and Milisa, Marko and Mishra, Shailendra and Miyake, Yo and Moerke, Ashley and Mombrikotb, Shorok and Mooney, Rob and Moulton, Tim and Muotka, Timo and Negishi, Junjiro N. and Neres-Lima, Vinicius and Nieminen, Mika L. and Nimptsch, Jorge and Ondruch, Jakub and Paavola, Riku and Pardo, Isabel and Patrick, Christopher J. and Peeters, Edwin T. H. M. and Pozo, Jesus and Pringle, Catherine and Prussian, Aaron and Quenta, Estefania and Quesada, Antonio and Reid, Brian and Richardson, John S. and Rigosi, Anna and Rincon, Jose and Risnoveanu, Geta and Robinson, Christopher T. and Rodriguez-Gallego, Lorena and Royer, Todd V. and Rusak, James A. and Santamans, Anna C. and Selmeczy, Geza B. and Simiyu, Gelas and Skuja, Agnija and Smykla, Jerzy and Sridhar, Kandikere R. and Sponseller, Ryan and Stoler, Aaron and Swan, Christopher M. and Szlag, David and Teixeira-de Mello, Franco and Tonkin, Jonathan D. and Uusheimo, Sari and Veach, Allison M. and Vilbaste, Sirje and Vought, Lena B. M. and Wang, Chiao-Ping and Webster, Jackson R. and Wilson, Paul B. and Woelfl, Stefan and Xenopoulos, Marguerite A. and Yates, Adam G. and Yoshimura, Chihiro and Yule, Catherine M. and Zhang, Yixin X. and Zwart, Jacob A.}, title = {Global patterns and drivers of ecosystem functioning in rivers and riparian zones}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aav0486}, pages = {8}, year = {2019}, abstract = {River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.}, language = {en} } @article{VanHoutTachmazidouBackmanetal.2020, author = {Van Hout, Cristopher V. and Tachmazidou, Ioanna and Backman, Joshua D. and Hoffman, Joshua D. and Liu, Daren and Pandey, Ashutosh K. and Gonzaga-Jauregui, Claudia and Khalid, Shareef and Ye, Bin and Banerjee, Nilanjana and Li, Alexander H. and O'Dushlaine, Colm and Marcketta, Anthony and Staples, Jeffrey and Schurmann, Claudia and Hawes, Alicia and Maxwell, Evan and Barnard, Leland and Lopez, Alexander and Penn, John and Habegger, Lukas and Blumenfeld, Andrew L. and Bai, Xiaodong and O'Keeffe, Sean and Yadav, Ashish and Praveen, Kavita and Jones, Marcus and Salerno, William J. and Chung, Wendy K. and Surakka, Ida and Willer, Cristen J. and Hveem, Kristian and Leader, Joseph B. and Carey, David J. and Ledbetter, David H. and Cardon, Lon and Yancopoulos, George D. and Economides, Aris and Coppola, Giovanni and Shuldiner, Alan R. and Balasubramanian, Suganthi and Cantor, Michael and Nelson, Matthew R. and Whittaker, John and Reid, Jeffrey G. and Marchini, Jonathan and Overton, John D. and Scott, Robert A. and Abecasis, Goncalo R. and Yerges-Armstrong, Laura M. and Baras, Aris}, title = {Exome sequencing and characterization of 49,960 individuals in the UK Biobank}, series = {Nature : the international weekly journal of science}, volume = {586}, journal = {Nature : the international weekly journal of science}, number = {7831}, publisher = {Macmillan Publishers Limited}, address = {London}, organization = {Regeneron Genetics Ctr}, issn = {0028-0836}, doi = {10.1038/s41586-020-2853-0}, pages = {749 -- 756}, year = {2020}, abstract = {The UK Biobank is a prospective study of 502,543 individuals, combining extensive phenotypic and genotypic data with streamlined access for researchers around the world(1). Here we describe the release of exome-sequence data for the first 49,960 study participants, revealing approximately 4 million coding variants (of which around 98.6\% have a frequency of less than 1\%). The data include 198,269 autosomal predicted loss-of-function (LOF) variants, a more than 14-fold increase compared to the imputed sequence. Nearly all genes (more than 97\%) had at least one carrier with a LOF variant, and most genes (more than 69\%) had at least ten carriers with a LOF variant. We illustrate the power of characterizing LOF variants in this population through association analyses across 1,730 phenotypes. In addition to replicating established associations, we found novel LOF variants with large effects on disease traits, includingPIEZO1on varicose veins,COL6A1on corneal resistance,MEPEon bone density, andIQGAP2andGMPRon blood cell traits. We further demonstrate the value of exome sequencing by surveying the prevalence of pathogenic variants of clinical importance, and show that 2\% of this population has a medically actionable variant. Furthermore, we characterize the penetrance of cancer in carriers of pathogenicBRCA1andBRCA2variants. Exome sequences from the first 49,960 participants highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.
Exome sequences from the first 49,960 participants in the UK Biobank highlight the promise of genome sequencing in large population-based studies and are now accessible to the scientific community.}, language = {en} } @article{BeaulieuBennettFouqueetal.2006, author = {Beaulieu, Jean-Philippe and Bennett, David P. and Fouqu{\´e}, Pascal and Williams, Andrew and Dominik, Martin and Jorgensen, Uffe Grae and Kubas, Daniel and Cassan, Arnaud and Coutures, Christian and Greenhill, John and Hill, Kym and Menzies, John and Sackett, Penny D. and Albrow, Michael D. and Brillant, Stephane and Caldwell, John A. R. and Calitz, Johannes Jacobus and Cook, Kem H. and Corrales Cosmeli, Esperanza de Santa Cecilia and Desort, Morgan and Dieters, Stefan and Dominis, Dijana and Donatowicz, Jadzia and Hoffman, Martie and Kane, Stephen R. and Marquette, Jean-Baptiste and Martin, Ralph and Meintjes, Pieter and Pollard, Karen R. and Sahu, Kailash C. and Vinter, Christian and Wambsganss, Joachim and Woller, Kristian and Horne, Keith and Steele, Iain and Bramich, Daniel M. and Burgdorf, Martin and Snodgrass, Colin and Bode, Mike and Udalski, Andr}, title = {Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing}, issn = {0028-0836}, doi = {10.1038/Nature04441}, year = {2006}, abstract = {In the favoured core-accretion model of formation of planetary systems, solid planetesimals accumulate to build up planetary cores, which then accrete nebular gas if they are sufficiently massive. Around M-dwarf stars ( the most common stars in our Galaxy), this model favours the formation of Earth-mass (M+) to Neptune-mass planets with orbital radii of 1 to 10 astronomical units (AU), which is consistent with the small number of gas giant planets known to orbit M-dwarf host stars(1-4). More than 170 extrasolar planets have been discovered with a wide range of masses and orbital periods, but planets of Neptune's mass or less have not hitherto been detected at separations of more than 0.15 AU from normal stars. Here we report the discovery of a 5.5(-2.7)(+5.5)M(+) planetary companion at a separation of 2.6(- 0.6)(+1.5) AU from a 0.22(-0.11)(+0.21)M(.) M-dwarf star, where M-. refers to a solar mass. (We propose to name it OGLE- 2005-BLG-390Lb, indicating a planetary mass companion to the lens star of the microlensing event.) The mass is lower than that of GJ876d (ref. 5), although the error bars overlap. Our detection suggests that such cool, sub-Neptune-mass planets may be more common than gas giant planets, as predicted by the core accretion theory.}, language = {en} } @article{HorikoshiYaghootkarMookKanamorietal.2013, author = {Horikoshi, Momoko and Yaghootkar, Hanieh and Mook-Kanamori, Dennis O. and Sovio, Ulla and Taal, H. Rob and Hennig, Branwen J. and Bradfield, Jonathan P. and St Pourcain, Beate and Evans, David M. and Charoen, Pimphen and Kaakinen, Marika and Cousminer, Diana L. and Lehtimaki, Terho and Kreiner-Moller, Eskil and Warrington, Nicole M. and Bustamante, Mariona and Feenstra, Bjarke and Berry, Diane J. and Thiering, Elisabeth and Pfab, Thiemo and Barton, Sheila J. and Shields, Beverley M. and Kerkhof, Marjan and van Leeuwen, Elisabeth M. and Fulford, Anthony J. and Kutalik, Zoltan and Zhao, Jing Hua and den Hoed, Marcel and Mahajan, Anubha and Lindi, Virpi and Goh, Liang-Kee and Hottenga, Jouke-Jan and Wu, Ying and Raitakari, Olli T. and Harder, Marie N. and Meirhaeghe, Aline and Ntalla, Ioanna and Salem, Rany M. and Jameson, Karen A. and Zhou, Kaixin and Monies, Dorota M. and Lagou, Vasiliki and Kirin, Mirna and Heikkinen, Jani and Adair, Linda S. and Alkuraya, Fowzan S. and Al-Odaib, Ali and Amouyel, Philippe and Andersson, Ehm Astrid and Bennett, Amanda J. and Blakemore, Alexandra I. F. and Buxton, Jessica L. and Dallongeville, Jean and Das, Shikta and de Geus, Eco J. C. and Estivill, Xavier and Flexeder, Claudia and Froguel, Philippe and Geller, Frank and Godfrey, Keith M. and Gottrand, Frederic and Groves, Christopher J. and Hansen, Torben and Hirschhorn, Joel N. and Hofman, Albert and Hollegaard, Mads V. and Hougaard, David M. and Hyppoenen, Elina and Inskip, Hazel M. and Isaacs, Aaron and Jorgensen, Torben and Kanaka-Gantenbein, Christina and Kemp, John P. and Kiess, Wieland and Kilpelainen, Tuomas O. and Klopp, Norman and Knight, Bridget A. and Kuzawa, Christopher W. and McMahon, George and Newnham, John P. and Niinikoski, Harri and Oostra, Ben A. and Pedersen, Louise and Postma, Dirkje S. and Ring, Susan M. and Rivadeneira, Fernando and Robertson, Neil R. and Sebert, Sylvain and Simell, Olli and Slowinski, Torsten and Tiesler, Carla M. T. and Toenjes, Anke and Vaag, Allan and Viikari, Jorma S. and Vink, Jacqueline M. and Vissing, Nadja Hawwa and Wareham, Nicholas J. and Willemsen, Gonneke and Witte, Daniel R. and Zhang, Haitao and Zhao, Jianhua and Wilson, James F. and Stumvoll, Michael and Prentice, Andrew M. and Meyer, Brian F. and Pearson, Ewan R. and Boreham, Colin A. G. and Cooper, Cyrus and Gillman, Matthew W. and Dedoussis, George V. and Moreno, Luis A. and Pedersen, Oluf and Saarinen, Maiju and Mohlke, Karen L. and Boomsma, Dorret I. and Saw, Seang-Mei and Lakka, Timo A. and Koerner, Antje and Loos, Ruth J. F. and Ong, Ken K. and Vollenweider, Peter and van Duijn, Cornelia M. and Koppelman, Gerard H. and Hattersley, Andrew T. and Holloway, John W. and Hocher, Berthold and Heinrich, Joachim and Power, Chris and Melbye, Mads and Guxens, Monica and Pennell, Craig E. and Bonnelykke, Klaus and Bisgaard, Hans and Eriksson, Johan G. and Widen, Elisabeth and Hakonarson, Hakon and Uitterlinden, Andre G. and Pouta, Anneli and Lawlor, Debbie A. and Smith, George Davey and Frayling, Timothy M. and McCarthy, Mark I. and Grant, Struan F. A. and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and Timpson, Nicholas J. and Prokopenko, Inga and Freathy, Rachel M.}, title = {New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism}, series = {Nature genetics}, volume = {45}, journal = {Nature genetics}, number = {1}, publisher = {Nature Publ. Group}, address = {New York}, organization = {MAGIC, Early Growth Genetics EGG}, issn = {1061-4036}, doi = {10.1038/ng.2477}, pages = {76 -- U115}, year = {2013}, abstract = {Birth weight within the normal range is associated with a variety of adult-onset diseases, but the mechanisms behind these associations are poorly understood(1). Previous genome-wide association studies of birth weight identified a variant in the ADCY5 gene associated both with birth weight and type 2 diabetes and a second variant, near CCNL1, with no obvious link to adult traits(2). In an expanded genome-wide association metaanalysis and follow-up study of birth weight (of up to 69,308 individuals of European descent from 43 studies), we have now extended the number of loci associated at genome-wide significance to 7, accounting for a similar proportion of variance as maternal smoking. Five of the loci are known to be associated with other phenotypes: ADCY5 and CDKAL1 with type 2 diabetes, ADRB1 with adult blood pressure and HMGA2 and LCORL with adult height. Our findings highlight genetic links between fetal growth and postnatal growth and metabolism.}, language = {en} } @article{BanksNishiyamaHasebeetal.2011, author = {Banks, Jo Ann and Nishiyama, Tomoaki and Hasebe, Mitsuyasu and Bowman, John L. and Gribskov, Michael and dePamphilis, Claude and Albert, Victor A. and Aono, Naoki and Aoyama, Tsuyoshi and Ambrose, Barbara A. and Ashton, Neil W. and Axtell, Michael J. and Barker, Elizabeth and Barker, Michael S. and Bennetzen, Jeffrey L. and Bonawitz, Nicholas D. and Chapple, Clint and Cheng, Chaoyang and Correa, Luiz Gustavo Guedes and Dacre, Michael and DeBarry, Jeremy and Dreyer, Ingo and Elias, Marek and Engstrom, Eric M. and Estelle, Mark and Feng, Liang and Finet, Cedric and Floyd, Sandra K. and Frommer, Wolf B. and Fujita, Tomomichi and Gramzow, Lydia and Gutensohn, Michael and Harholt, Jesper and Hattori, Mitsuru and Heyl, Alexander and Hirai, Tadayoshi and Hiwatashi, Yuji and Ishikawa, Masaki and Iwata, Mineko and Karol, Kenneth G. and Koehler, Barbara and Kolukisaoglu, Uener and Kubo, Minoru and Kurata, Tetsuya and Lalonde, Sylvie and Li, Kejie and Li, Ying and Litt, Amy and Lyons, Eric and Manning, Gerard and Maruyama, Takeshi and Michael, Todd P. and Mikami, Koji and Miyazaki, Saori and Morinaga, Shin-ichi and Murata, Takashi and M{\"u}ller-R{\"o}ber, Bernd and Nelson, David R. and Obara, Mari and Oguri, Yasuko and Olmstead, Richard G. and Onodera, Naoko and Petersen, Bent Larsen and Pils, Birgit and Prigge, Michael and Rensing, Stefan A. and Mauricio Riano-Pachon, Diego and Roberts, Alison W. and Sato, Yoshikatsu and Scheller, Henrik Vibe and Schulz, Burkhard and Schulz, Christian and Shakirov, Eugene V. and Shibagaki, Nakako and Shinohara, Naoki and Shippen, Dorothy E. and Sorensen, Iben and Sotooka, Ryo and Sugimoto, Nagisa and Sugita, Mamoru and Sumikawa, Naomi and Tanurdzic, Milos and Theissen, Guenter and Ulvskov, Peter and Wakazuki, Sachiko and Weng, Jing-Ke and Willats, William W. G. T. and Wipf, Daniel and Wolf, Paul G. and Yang, Lixing and Zimmer, Andreas D. and Zhu, Qihui and Mitros, Therese and Hellsten, Uffe and Loque, Dominique and Otillar, Robert and Salamov, Asaf and Schmutz, Jeremy and Shapiro, Harris and Lindquist, Erika and Lucas, Susan and Rokhsar, Daniel and Grigoriev, Igor V.}, title = {The selaginella genome identifies genetic changes associated with the evolution of vascular plants}, series = {Science}, volume = {332}, journal = {Science}, number = {6032}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1203810}, pages = {960 -- 963}, year = {2011}, abstract = {Vascular plants appeared similar to 410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.}, language = {en} } @article{AartsAndersonAndersonetal.2015, author = {Aarts, Alexander A. and Anderson, Joanna E. and Anderson, Christopher J. and Attridge, Peter R. and Attwood, Angela and Axt, Jordan and Babel, Molly and Bahnik, Stepan and Baranski, Erica and Barnett-Cowan, Michael and Bartmess, Elizabeth and Beer, Jennifer and Bell, Raoul and Bentley, Heather and Beyan, Leah and Binion, Grace and Borsboom, Denny and Bosch, Annick and Bosco, Frank A. and Bowman, Sara D. and Brandt, Mark J. and Braswell, Erin and Brohmer, Hilmar and Brown, Benjamin T. and Brown, Kristina and Bruening, Jovita and Calhoun-Sauls, Ann and Callahan, Shannon P. and Chagnon, Elizabeth and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cillessen, Linda and Clay, Russ and Cleary, Hayley and Cloud, Mark D. and Cohn, Michael and Cohoon, Johanna and Columbus, Simon and Cordes, Andreas and Costantini, Giulio and Alvarez, Leslie D. Cramblet and Cremata, Ed and Crusius, Jan and DeCoster, Jamie and DeGaetano, Michelle A. and Della Penna, Nicolas and den Bezemer, Bobby and Deserno, Marie K. and Devitt, Olivia and Dewitte, Laura and Dobolyi, David G. and Dodson, Geneva T. and Donnellan, M. Brent and Donohue, Ryan and Dore, Rebecca A. and Dorrough, Angela and Dreber, Anna and Dugas, Michelle and Dunn, Elizabeth W. and Easey, Kayleigh and Eboigbe, Sylvia and Eggleston, Casey and Embley, Jo and Epskamp, Sacha and Errington, Timothy M. and Estel, Vivien and Farach, Frank J. and Feather, Jenelle and Fedor, Anna and Fernandez-Castilla, Belen and Fiedler, Susann and Field, James G. and Fitneva, Stanka A. and Flagan, Taru and Forest, Amanda L. and Forsell, Eskil and Foster, Joshua D. and Frank, Michael C. and Frazier, Rebecca S. and Fuchs, Heather and Gable, Philip and Galak, Jeff and Galliani, Elisa Maria and Gampa, Anup and Garcia, Sara and Gazarian, Douglas and Gilbert, Elizabeth and Giner-Sorolla, Roger and Gl{\"o}ckner, Andreas and G{\"o}llner, Lars and Goh, Jin X. and Goldberg, Rebecca and Goodbourn, Patrick T. and Gordon-McKeon, Shauna and Gorges, Bryan and Gorges, Jessie and Goss, Justin and Graham, Jesse and Grange, James A. and Gray, Jeremy and Hartgerink, Chris and Hartshorne, Joshua and Hasselman, Fred and Hayes, Timothy and Heikensten, Emma and Henninger, Felix and Hodsoll, John and Holubar, Taylor and Hoogendoorn, Gea and Humphries, Denise J. and Hung, Cathy O. -Y. and Immelman, Nathali and Irsik, Vanessa C. and Jahn, Georg and Jaekel, Frank and Jekel, Marc and Johannesson, Magnus and Johnson, Larissa G. and Johnson, David J. and Johnson, Kate M. and Johnston, William J. and Jonas, Kai and Joy-Gaba, Jennifer A. and Kappes, Heather Barry and Kelso, Kim and Kidwell, Mallory C. and Kim, Seung Kyung and Kirkhart, Matthew and Kleinberg, Bennett and Knezevic, Goran and Kolorz, Franziska Maria and Kossakowski, Jolanda J. and Krause, Robert Wilhelm and Krijnen, Job and Kuhlmann, Tim and Kunkels, Yoram K. and Kyc, Megan M. and Lai, Calvin K. and Laique, Aamir and Lakens, Daniel and Lane, Kristin A. and Lassetter, Bethany and Lazarevic, Ljiljana B. and LeBel, Etienne P. and Lee, Key Jung and Lee, Minha and Lemm, Kristi and Levitan, Carmel A. and Lewis, Melissa and Lin, Lin and Lin, Stephanie and Lippold, Matthias and Loureiro, Darren and Luteijn, Ilse and Mackinnon, Sean and Mainard, Heather N. and Marigold, Denise C. and Martin, Daniel P. and Martinez, Tylar and Masicampo, E. J. and Matacotta, Josh and Mathur, Maya and May, Michael and Mechin, Nicole and Mehta, Pranjal and Meixner, Johannes and Melinger, Alissa and Miller, Jeremy K. and Miller, Mallorie and Moore, Katherine and M{\"o}schl, Marcus and Motyl, Matt and M{\"u}ller, Stephanie M. and Munafo, Marcus and Neijenhuijs, Koen I. and Nervi, Taylor and Nicolas, Gandalf and Nilsonne, Gustav and Nosek, Brian A. and Nuijten, Michele B. and Olsson, Catherine and Osborne, Colleen and Ostkamp, Lutz and Pavel, Misha and Penton-Voak, Ian S. and Perna, Olivia and Pernet, Cyril and Perugini, Marco and Pipitone, R. Nathan and Pitts, Michael and Plessow, Franziska and Prenoveau, Jason M. and Rahal, Rima-Maria and Ratliff, Kate A. and Reinhard, David and Renkewitz, Frank and Ricker, Ashley A. and Rigney, Anastasia and Rivers, Andrew M. and Roebke, Mark and Rutchick, Abraham M. and Ryan, Robert S. and Sahin, Onur and Saide, Anondah and Sandstrom, Gillian M. and Santos, David and Saxe, Rebecca and Schlegelmilch, Rene and Schmidt, Kathleen and Scholz, Sabine and Seibel, Larissa and Selterman, Dylan Faulkner and Shaki, Samuel and Simpson, William B. and Sinclair, H. Colleen and Skorinko, Jeanine L. M. and Slowik, Agnieszka and Snyder, Joel S. and Soderberg, Courtney and Sonnleitner, Carina and Spencer, Nick and Spies, Jeffrey R. and Steegen, Sara and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and Talhelm, Thomas and Tapia, Megan and te Dorsthorst, Anniek and Thomae, Manuela and Thomas, Sarah L. and Tio, Pia and Traets, Frits and Tsang, Steve and Tuerlinckx, Francis and Turchan, Paul and Valasek, Milan and Van Aert, Robbie and van Assen, Marcel and van Bork, Riet and van de Ven, Mathijs and van den Bergh, Don and van der Hulst, Marije and van Dooren, Roel and van Doorn, Johnny and van Renswoude, Daan R. and van Rijn, Hedderik and Vanpaemel, Wolf and Echeverria, Alejandro Vasquez and Vazquez, Melissa and Velez, Natalia and Vermue, Marieke and Verschoor, Mark and Vianello, Michelangelo and Voracek, Martin and Vuu, Gina and Wagenmakers, Eric-Jan and Weerdmeester, Joanneke and Welsh, Ashlee and Westgate, Erin C. and Wissink, Joeri and Wood, Michael and Woods, Andy and Wright, Emily and Wu, Sining and Zeelenberg, Marcel and Zuni, Kellylynn}, title = {Estimating the reproducibility of psychological science}, series = {Science}, volume = {349}, journal = {Science}, number = {6251}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, organization = {Open Sci Collaboration}, issn = {1095-9203}, doi = {10.1126/science.aac4716}, pages = {8}, year = {2015}, abstract = {Reproducibility is a defining feature of science, but the extent to which it characterizes current research is unknown. We conducted replications of 100 experimental and correlational studies published in three psychology journals using high-powered designs and original materials when available. Replication effects were half the magnitude of original effects, representing a substantial decline. Ninety-seven percent of original studies had statistically significant results. Thirty-six percent of replications had statistically significant results; 47\% of original effect sizes were in the 95\% confidence interval of the replication effect size; 39\% of effects were subjectively rated to have replicated the original result; and if no bias in original results is assumed, combining original and replication results left 68\% with statistically significant effects. Correlational tests suggest that replication success was better predicted by the strength of original evidence than by characteristics of the original and replication teams.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2016, author = {Abdalla, Hassan E. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Fai{\c{c}}al Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Arrieta, M. and Aubert, Pierre and Backes, Michael and Balzer, Arnim and Barnard, Michelle and Becherini, Yvonne and Tjus, Julia Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Birsin, E. and Blackwell, R. and Bottcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Capasso, M. and Carr, John and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chen, Andrew and Chevalier, J. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Condon, B. and Conrad, Jan and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, Christoph and deWilt, P. and Djannati-Atai, Arache and Domainko, Wilfried and Donath, Axel and Dubus, Guillaume and Dutson, Kate and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, Stuart and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and F{\"u}ßling, Matthias and Gabici, Stefano and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, Gianluca and Giebels, B. and Glicenstein, J. F. and Gottschall, Daniel and Goyal, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, Daniela and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, Gilles and Hermann, G. and Hervet, Olivier and Hillert, A. and Hinton, James Anthony and Hofmann, Werner and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, Alex and Jacholkowska, A. and Jamrozy, Marek and Janiak, M. and Jankowsky, D. and Jankowsky, Felix and Jingo, M. and Jogler, Tobias and Jouvin, Lea and Jung-Richardt, Ira and Kastendieck, M. A. and Katarzynski, Krzysztof and Katz, Uli and Kerszberg, D. and Khelifi, B. and Kieffer, M. and King, J. and Klepser, S. and Klochkov, Dmitry and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, Michael and Krayzel, F. and Kruger, P. P. and Laffon, H. and Lamanna, G. and Lau, Jeanie and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, Thomas and Lorentz, M. and Lui, R. and Lypova, Iryna and Marandon, Vincent and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, Michael and Meintjes, Petrus Johannes and Menzler, U. and Meyer, Manuel and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, Mathieu and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, Hirokazu and Ohm, Stefan and Oettl, S. and Ostrowski, M. and Oya, I. and Padovani, Marco and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, Helen and Prokhorov, Dmitry and Prokoph, Heike and Puehlhofer, Gerd and Punch, Michael and Quirrenbach, Andreas and Raab, S. and Reimer, Anita and Reimer, Olaf and Renaud, M. and de los Reyes, R. and Rieger, Frank and Romoli, Carlo and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, David and Sanchez, David A. and Santangelo, Andrea and Sasaki, Manami and Schlickeiser, Reinhard and Schussler, F. and Schulz, Andreas and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Shafi, N. and Simoni, R. and Sol, H. and Spanier, Felix and Spengler, G. and Spiess, F. and Stawarz, Lukasz and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, Martin and Trichard, C. and Tuffs, R. and van der Walt, Johan and van Eldik, Christopher and van Soelen, Brian and Vasileiadis, Georges and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, Jacco and Voisin, F. and Voelk, Heinrich J. and Vuillaume, Thomas and Wadiasingh, Z. and Wagner, Stefan J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, Alicja and Willmann, P. and Woernlein, A. and Wouters, Denis and Yang, R. and Zabalza, Victor and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Andreas and Zefi, F. and Ziegler, A. and Zywucka, Natalia}, title = {Search for Dark Matter Annihilations towards the Inner Galactic Halo from 10 Years of Observations with HESS}, series = {Physical review letters}, volume = {117}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, organization = {HESS Collaboration}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.117.111301}, pages = {6}, year = {2016}, abstract = {The inner region of the Milky Way halo harbors a large amount of dark matter (DM). Given its proximity, it is one of the most promising targets to look for DM. We report on a search for the annihilations of DM particles using gamma-ray observations towards the inner 300 pc of the Milky Way, with the H.E.S.S. array of ground-based Cherenkov telescopes. The analysis is based on a 2D maximum likelihood method using Galactic Center (GC) data accumulated by H.E.S.S. over the last 10 years (2004-2014), and does not show any significant gamma-ray signal above background. Assuming Einasto and Navarro-Frenk-White DM density profiles at the GC, we derive upper limits on the annihilation cross section . These constraints are the strongest obtained so far in the TeV DM mass range and improve upon previous limits by a factor 5. For the Einasto profile, the constraints reach values of 6 x 10(-26) cm(3) s(-1) in the W+W- channel for a DM particle mass of 1.5 TeV, and 2 x 10(-26) cm(3) s(-1) in the tau(+)tau(-) channel for a 1 TeV mass. For the first time, ground-based gamma-ray observations have reached sufficient sensitivity to probe values expected from the thermal relic density for TeV DM particles.}, language = {en} } @article{KubasCassanBeaulieuetal.2005, author = {Kubas, Daniel and Cassan, A. and Beaulieu, Jean-Philippe and Coutures, C. and Dominik, M. and Albrow, Michael D. and Brillant, Stephane and Caldwell, John A. R. and Dominis, Dijana and Donatowicz, J. and Fendt, Christian and Fouque, P. and Jorgensen, Uffe Grae and Greenhill, John and Hill, K. and Heinm{\"u}ller, Janine and Horne, Keith and Kane, Stephen R. and Marquette, Jean-Baptiste and Martin, Ralph and Menzies, J. W. and Pollard, K. R. and Sahu, K. C. and Vinter, C. and Wambsganss, Joachim and Watson, R. and Williams, A. and Thurl, C.}, title = {Full characterization of binary-lens event OGLE-2002-BLG-069 from PLANET observations}, issn = {0004-6361}, year = {2005}, abstract = {We analyze the photometric data obtained by PLANET and OGLE on the caustic-crossing binary-lens microlensing event OGLE-2002-BLG-069. Thanks to the excellent photometric and spectroscopic coverage of the event, we are able to constrain the lens model up to the known ambiguity between close and wide binary lenses. The detection of annual parallax in combination with measurements of extended-source effects allows us to determine the mass, distance and velocity of the lens components for the competing models. While the model involving a close binary lens leads to a Bulge- Disc lens scenario with a lens mass of M = (0.51 ± 0.15) M-\&ODOT; and distance of D-L = (2.9 ± 0.4) kpc, the wide binary lens solution requires a rather implausible binary black-hole lens ( M \&GSIM; 126 M-\&ODOT;). Furthermore we compare current state-of-the-art numerical and empirical models for the surface brightness profile of the source, a G5III Bulge giant. We find that a linear limb-darkening model for the atmosphere of the source star is consistent with the data whereas a PHOENIX atmosphere model assuming LTE and with no free parameter does not match our observations}, language = {en} } @article{CassanBeaulieuBrillantetal.2004, author = {Cassan, A. and Beaulieu, Jean-Philippe and Brillant, Stephane and Coutures, C. and Dominik, M. and Donatowicz, J. and Jorgensen, Uffe Grae and Kubas, Daniel and Albrow, Michael D. and Caldwell, John A. R. and Fouque, P. and Greenhill, John and Hill, K. and Horne, Keith and Kane, Stephen R. and Martin, Ralph and Menzies, J. W. and Pollard, K. R. and Sahu, K. C. and Vinter, C. and Wambsganss, Joachim and Watson, R. and Williams, A. and Fendt, Christian and Hauschildt, P. and Heinmueller, Janine and Marquette, Jean-Baptiste and Thurl, C.}, title = {Probing the atmosphere of the bulge G5III star OGLE-2002-BUL-069 by analysis of microlensed H alpha line}, year = {2004}, abstract = {We discuss high-resolution, time-resolved spectra of the caustic exit of the binary microlensing event OGLE 2002-BLG-069 obtained with UVES on the VLT. The source star is a G5III giant in the Galactic Bulge. During such events, the source star is highly magnified, and a strong differential magnification around the caustic resolves its surface. Using an appropriate model stellar atmosphere generated by the PHOENIX v2.6 code we obtain a model light curve for the caustic exit and compare it with a dense set of photometric observations obtained by the PLANET microlensing follow up network. We further compare predicted variations in the Halpha equivalent width with those measured from our spectra. While the model and observations agree in the gross features, there are discrepancies suggesting shortcomings in the model, particularly for the Halpha line core, where we have detected amplified emission from the stellar chromosphere after the source star's trailing limb exited the caustic. This achievement became possible by the provision of the very efficient OGLE-III Early Warning System, a network of small telescopes capable of nearly-continuous round-the-clock photometric monitoring, on-line data reduction, daily near-real-time modelling in order to predict caustic crossing parameters, and a fast and efficient response of a 8 m class telescope to a "Target-of-Opportunity" observation request}, language = {en} } @article{JiangDePoyGalYametal.2004, author = {Jiang, G. F. and DePoy, D. L. and Gal-Yam, A. and Gaudi, B. S. and Gould, A. and Han, C. and Lipkin, Y. and Maoz, D. and Ofek, E. O. and Park, B. G. and Pogge, R. W. and Udalski, A. and Kubiak, Marcin and Szymanski, M. K. and Szewczyk, O. and Zerbrun, K. and Wyrzykowski, L. and Soszynski, I. and Pietrzynski, G. and Albrow, Michael D. and Beaulieu, Jean-Philippe and Caldwell, John A. R. and Cassan, A. and Coutures, C. and Dominik, M. and Donatowicz, J. and Fouque, P. and Greenhill, John and Hill, K. and Horne, Keith and Jorgensen, S. F. and Jorgensen, Uffe Grae and Kane, Stephen R. and Kubas, Daniel and Martin, Ralph and Menzies, J. W. and Pollard, R. and Sahu, K. C. and Wambsganss, Joachim and Watson, R. and Williams, A.}, title = {OGLE-2003-BLG-238 : Microlensing mass estimate of an isolated star}, issn = {0004-637X}, year = {2004}, abstract = {Microlensing is the only known direct method to measure the masses of stars that lack visible companions. In terms of microlensing observables, the mass is given by M (c(2)/4G)(r) over tilde (E)theta(E) and so requires the measurement of both the angular Einstein radius theta(E) and the projected Einstein radius (r) over tilde (E). Simultaneous measurement of these two parameters is extremely rare. Here we analyze OGLE-2003-BLG-238, a spectacularly bright (I-min 10.3), high-magnification (A(max) 170) microlensing event. Pronounced finite-source effects permit a measurement of theta(E) = 650 muas. Although the timescale of the event is only t(E) 38 days, one can still obtain weak constraints on the microlens parallax: 4.4 AU < <(r)over tilde>(E) < 18 AU at the 1 \σ level. Together these two parameter measurements yield a range for the lens mass of 0.36 M-\&ODOT; < M < 1.48 M-\&ODOT;. As was the case for MACHO- LMC-5, the only other single star (apart from the Sun) whose mass has been determined from its gravitational effects, this estimate is rather crude. It does, however, demonstrate the viability of the technique. We also discuss future prospects for single-lens mass measurements}, language = {en} } @article{SackettAlbrowBeaulieuetal.2003, author = {Sackett, Penny D. and Albrow, Michael D. and Beaulieu, Jean-Philippe and Caldwell, John A. R. and Coutures, C. and Dominik, M. and Greenhill, John and Hill, K. and Horne, Keith and Jorgensen, Uffe Grae and Kane, Stephen R. and Kubas, Daniel and Martin, Ralph and Menzies, J. W. and Pollard, K. R. and Sahu, K. C. and Wambsganß, Joachim and Watson, R. and Williams, A.}, title = {PLANET II : a microlensing and transit search for extrasolar planets}, year = {2003}, abstract = {Due to their extremely small luminosity compared to the stars they orbit, planets outside our own Solar System are extraordinarily difficult to detect directly in optical light. Careful photometric monitoring of distant stars, however, can reveal the presence of exoplanets via the microlensing or eclipsing effects they induce. The international PLANET collaboration is performing such monitoring using a cadre of semi-dedicated telescopes around the world. Their results constrain the number of gas giants orbiting 1-7 AU from the most typical stars in the Galaxy. Upgrades in the program are opening regions of ''exoplanet discovery space'' - toward smaller masses and larger orbital radii - that are inaccessible to the Doppler velocity technique.}, language = {en} } @article{ThomasCarvalhoHaileetal.2019, author = {Thomas, Jessica E. and Carvalho, Gary R. and Haile, James and Rawlence, Nicolas J. and Martin, Michael D. and Ho, Simon Y. W. and Sigfusson, Arnor P. and Josefsson, Vigfus A. and Frederiksen, Morten and Linnebjerg, Jannie F. and Castruita, Jose A. Samaniego and Niemann, Jonas and Sinding, Mikkel-Holger S. and Sandoval-Velasco, Marcela and Soares, Andre E. R. and Lacy, Robert and Barilaro, Christina and Best, Juila and Brandis, Dirk and Cavallo, Chiara and Elorza, Mikelo and Garrett, Kimball L. and Groot, Maaike and Johansson, Friederike and Lifjeld, Jan T. and Nilson, Goran and Serjeanston, Dale and Sweet, Paul and Fuller, Errol and Hufthammer, Anne Karin and Meldgaard, Morten and Fjeldsa, Jon and Shapiro, Beth and Hofreiter, Michael and Stewart, John R. and Gilbert, M. Thomas P. and Knapp, Michael}, title = {Demographic reconstruction from ancient DNA supports rapid extinction of the great auk}, series = {eLife}, volume = {8}, journal = {eLife}, publisher = {eLife Sciences Publications}, address = {Cambridge}, issn = {2050-084X}, doi = {10.7554/eLife.47509}, pages = {35}, year = {2019}, abstract = {The great auk was once abundant and distributed across the North Atlantic. It is now extinct, having been heavily exploited for its eggs, meat, and feathers. We investigated the impact of human hunting on its demise by integrating genetic data, GPS-based ocean current data, and analyses of population viability. We sequenced complete mitochondrial genomes of 41 individuals from across the species' geographic range and reconstructed population structure and population dynamics throughout the Holocene. Taken together, our data do not provide any evidence that great auks were at risk of extinction prior to the onset of intensive human hunting in the early 16th century. In addition, our population viability analyses reveal that even if the great auk had not been under threat by environmental change, human hunting alone could have been sufficient to cause its extinction. Our results emphasise the vulnerability of even abundant and widespread species to intense and localised exploitation.}, language = {en} } @article{ThomasCarvalhoHaileetal.2017, author = {Thomas, Jessica E. and Carvalho, Gary R. and Haile, James and Martin, Michael D. and Castruita, Jose A. Samaniego and Niemann, Jonas and Sinding, Mikkel-Holger S. and Sandoval-Velasco, Marcela and Rawlence, Nicolas J. and Fuller, Errol and Fjeldsa, Jon and Hofreiter, Michael and Stewart, John R. and Gilbert, M. Thomas P. and Knapp, Michael}, title = {An ‛Aukward' tale}, series = {Genes}, volume = {8}, journal = {Genes}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2073-4425}, doi = {10.3390/genes8060164}, pages = {164}, year = {2017}, abstract = {One hundred and seventy-three years ago, the last two Great Auks, Pinguinus impennis, ever reliably seen were killed. Their internal organs can be found in the collections of the Natural History Museum of Denmark, but the location of their skins has remained a mystery. In 1999, Great Auk expert Errol Fuller proposed a list of five potential candidate skins in museums around the world. Here we take a palaeogenomic approach to test which—if any—of Fuller's candidate skins likely belong to either of the two birds. Using mitochondrial genomes from the five candidate birds (housed in museums in Bremen, Brussels, Kiel, Los Angeles, and Oldenburg) and the organs of the last two known individuals, we partially solve the mystery that has been on Great Auk scholars' minds for generations and make new suggestions as to the whereabouts of the still-missing skin from these two birds.}, language = {en} } @article{BeaumontWarringtonCavadinoetal.2018, author = {Beaumont, Robin N. and Warrington, Nicole M. and Cavadino, Alana and Tyrrell, Jessica and Nodzenski, Michael and Horikoshi, Momoko and Geller, Frank and Myhre, Ronny and Richmond, Rebecca C. and Paternoster, Lavinia and Bradfield, Jonathan P. and Kreiner-Moller, Eskil and Huikari, Ville and Metrustry, Sarah and Lunetta, Kathryn L. and Painter, Jodie N. and Hottenga, Jouke-Jan and Allard, Catherine and Barton, Sheila J. and Espinosa, Ana and Marsh, Julie A. and Potter, Catherine and Zhang, Ge and Ang, Wei and Berry, Diane J. and Bouchard, Luigi and Das, Shikta and Hakonarson, Hakon and Heikkinen, Jani and Helgeland, Oyvind and Hocher, Berthold and Hofman, Albert and Inskip, Hazel M. and Jones, Samuel E. and Kogevinas, Manolis and Lind, Penelope A. and Marullo, Letizia and Medland, Sarah E. and Murray, Anna and Murray, Jeffrey C. and Njolstad, Pal R. and Nohr, Ellen A. and Reichetzeder, Christoph and Ring, Susan M. and Ruth, Katherine S. and Santa-Marina, Loreto and Scholtens, Denise M. and Sebert, Sylvain and Sengpiel, Verena and Tuke, Marcus A. and Vaudel, Marc and Weedon, Michael N. and Willemsen, Gonneke and Wood, Andrew R. and Yaghootkar, Hanieh and Muglia, Louis J. and Bartels, Meike and Relton, Caroline L. and Pennell, Craig E. and Chatzi, Leda and Estivill, Xavier and Holloway, John W. and Boomsma, Dorret I. and Montgomery, Grant W. and Murabito, Joanne M. and Spector, Tim D. and Power, Christine and Jarvelin, Marjo-Ritta and Bisgaard, Hans and Grant, Struan F. A. and Sorensen, Thorkild I. A. and Jaddoe, Vincent W. and Jacobsson, Bo and Melbye, Mads and McCarthy, Mark I. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Frayling, Timothy M. and Hivert, Marie-France and Felix, Janine F. and Hypponen, Elina and Lowe, William L. and Evans, David M. and Lawlor, Debbie A. and Feenstra, Bjarke and Freathy, Rachel M.}, title = {Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics}, series = {Human molecular genetics}, volume = {27}, journal = {Human molecular genetics}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, organization = {Early Growth Genetics EGG}, issn = {0964-6906}, doi = {10.1093/hmg/ddx429}, pages = {742 -- 756}, year = {2018}, abstract = {Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P< 5 x 10(-8). In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.}, language = {en} } @misc{HetenyiMolinariClintonetal.2018, author = {Hetenyi, Gyorgy and Molinari, Irene and Clinton, John and Bokelmann, Gotz and Bondar, Istvan and Crawford, Wayne C. and Dessa, Jean-Xavier and Doubre, Cecile and Friederich, Wolfgang and Fuchs, Florian and Giardini, Domenico and Graczer, Zoltan and Handy, Mark R. and Herak, Marijan and Jia, Yan and Kissling, Edi and Kopp, Heidrun and Korn, Michael and Margheriti, Lucia and Meier, Thomas and Mucciarelli, Marco and Paul, Anne and Pesaresi, Damiano and Piromallo, Claudia and Plenefisch, Thomas and Plomerova, Jaroslava and Ritter, Joachim and Rumpker, Georg and Sipka, Vesna and Spallarossa, Daniele and Thomas, Christine and Tilmann, Frederik and Wassermann, Joachim and Weber, Michael and Weber, Zoltan and Wesztergom, Viktor and Zivcic, Mladen and Abreu, Rafael and Allegretti, Ivo and Apoloner, Maria-Theresia and Aubert, Coralie and Besancon, Simon and de Berc, Maxime Bes and Brunel, Didier and Capello, Marco and Carman, Martina and Cavaliere, Adriano and Cheze, Jerome and Chiarabba, Claudio and Cougoulat, Glenn and Cristiano, Luigia and Czifra, Tibor and Danesi, Stefania and Daniel, Romuald and Dannowski, Anke and Dasovic, Iva and Deschamps, Anne and Egdorf, Sven and Fiket, Tomislav and Fischer, Kasper and Funke, Sigward and Govoni, Aladino and Groschl, Gidera and Heimers, Stefan and Heit, Ben and Herak, Davorka and Huber, Johann and Jaric, Dejan and Jedlicka, Petr and Jund, Helene and Klingen, Stefan and Klotz, Bernhard and Kolinsky, Petr and Kotek, Josef and Kuhne, Lothar and Kuk, Kreso and Lange, Dietrich and Loos, Jurgen and Lovati, Sara and Malengros, Deny and Maron, Christophe and Martin, Xavier and Massa, Marco and Mazzarini, Francesco and Metral, Laurent and Moretti, Milena and Munzarova, Helena and Nardi, Anna and Pahor, Jurij and Pequegnat, Catherine and Petersen, Florian and Piccinini, Davide and Pondrelli, Silvia and Prevolnik, Snjezan and Racine, Roman and Regnier, Marc and Reiss, Miriam and Salimbeni, Simone and Santulin, Marco and Scherer, Werner and Schippkus, Sven and Schulte-Kortnack, Detlef and Solarino, Stefano and Spieker, Kathrin and Stipcevic, Josip and Strollo, Angelo and Sule, Balint and Szanyi, Gyongyver and Szucs, Eszter and Thorwart, Martin and Ueding, Stefan and Vallocchia, Massimiliano and Vecsey, Ludek and Voigt, Rene and Weidle, Christian and Weyland, Gauthier and Wiemer, Stefan and Wolf, Felix and Wolyniec, David and Zieke, Thomas}, title = {The AlpArray seismic network}, series = {Surveys in Geophysics}, volume = {39}, journal = {Surveys in Geophysics}, number = {5}, publisher = {Springer}, address = {Dordrecht}, organization = {ETHZ SED Elect Lab AlpArray Seismic Network Team AlpArray OBS Cruise Crew AlpArray Working Grp}, issn = {0169-3298}, doi = {10.1007/s10712-018-9472-4}, pages = {1009 -- 1033}, year = {2018}, abstract = {The AlpArray programme is a multinational, European consortium to advance our understanding of orogenesis and its relationship to mantle dynamics, plate reorganizations, surface processes and seismic hazard in the Alps-Apennines-Carpathians-Dinarides orogenic system. The AlpArray Seismic Network has been deployed with contributions from 36 institutions from 11 countries to map physical properties of the lithosphere and asthenosphere in 3D and thus to obtain new, high-resolution geophysical images of structures from the surface down to the base of the mantle transition zone. With over 600 broadband stations operated for 2 years, this seismic experiment is one of the largest simultaneously operated seismological networks in the academic domain, employing hexagonal coverage with station spacing at less than 52 km. This dense and regularly spaced experiment is made possible by the coordinated coeval deployment of temporary stations from numerous national pools, including ocean-bottom seismometers, which were funded by different national agencies. They combine with permanent networks, which also required the cooperation of many different operators. Together these stations ultimately fill coverage gaps. Following a short overview of previous large-scale seismological experiments in the Alpine region, we here present the goals, construction, deployment, characteristics and data management of the AlpArray Seismic Network, which will provide data that is expected to be unprecedented in quality to image the complex Alpine mountains at depth.}, language = {en} } @article{KingGonzalezFortesBalaresqueetal.2014, author = {King, Turi E. and Gonzalez-Fortes, Gloria M. and Balaresque, Patricia and Thomas, Mark G. and Balding, David and Delser, Pierpaolo Maisano and Neumann, Rita and Parson, Walther and Knapp, Michael and Walsh, Susan and Tonasso, Laure and Holt, John and Kayser, Manfred and Appleby, Jo and Forster, Peter and Ekserdjian, David and Hofreiter, Michael and Schuerer, Kevin}, title = {Identification of the remains of King Richard III}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms6631}, pages = {8}, year = {2014}, language = {en} } @misc{BeaumontWarringtonCavadinoetal.2017, author = {Beaumont, Robin N. and Warrington, Nicole M. and Cavadino, Alana and Tyrrell, Jessica and Nodzenski, Michael and Horikoshi, Momoko and Geller, Frank and Myhre, Ronny and Richmond, Rebecca C. and Paternoster, Lavinia and Bradfield, Jonathan P. and Kreiner-M{\o}ller, Eskil and Huikari, Ville and Metrustry, Sarah and Lunetta, Kathryn L. and Painter, Jodie N. and Hottenga, Jouke-Jan and Allard, Catherine and Barton, Sheila J. and Espinosa, Ana and Marsh, Julie A. and Potter, Catherine and Zhang, Ge and Ang, Wei and Berry, Diane J. and Bouchard, Luigi and Das, Shikta and Hakonarson, Hakon and Heikkinen, Jani and Helgeland, {\O}yvind and Hocher, Berthold and Hofman, Albert and Inskip, Hazel M. and Jones, Samuel E. and Kogevinas, Manolis and Lind, Penelope A. and Marullo, Letizia and Medland, Sarah E. and Murray, Anna and Murray, Jeffrey C. and Nj{\o}lstad, Pa ̊l R. and Nohr, Ellen A. and Reichetzeder, Christoph and Ring, Susan M. and Ruth, Katherine S. and Santa-Marina, Loreto and Scholtens, Denise M. and Sebert, Sylvain and Sengpiel, Verena and Tuke, Marcus A. and Vaudel, Marc and Weedon, Michael N. and Willemsen, Gonneke and Wood, Andrew R. and Yaghootkar, Hanieh and Muglia, Louis J. and Bartels, Meike and Relton, Caroline L. and Pennell, Craig E. and Chatzi, Leda and Estivill, Xavier and Holloway, John W. and Boomsma, Dorret I. and Montgomery, Grant W. and Murabito, Joanne M. and Spector, Tim D. and Power, Christine and Ja ̈rvelin, Marjo-Ritta and Bisgaard, Hans and Grant, Struan F.A. and S{\o}rensen, Thorkild I.A. and Jaddoe, Vincent W. and Jacobsson, Bo and Melbye, Mads and McCarthy, Mark I. and Hattersley, Andrew T. and Hayes, M. Geoffrey and Frayling, Timothy M. and Hivert, Marie-France and Felix, Janine F. and Hyppo ̈nen, Elina and Lowe, William L. , Jr and Evans, David M. and Lawlor, Debbie A. and Feenstra, Bjarke and Freathy, Rachel M.}, title = {Genome-wide association study of offspring birth weight in 86 577 women identifies five novel loci and highlights maternal genetic effects that are independent of fetal genetics}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {628}, issn = {1866-8372}, doi = {10.25932/publishup-42310}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-423100}, pages = {15}, year = {2017}, abstract = {Genome-wide association studies of birth weight have focused on fetal genetics, whereas relatively little is known about the role of maternal genetic variation. We aimed to identify maternal genetic variants associated with birth weight that could highlight potentially relevant maternal determinants of fetal growth. We meta-analysed data on up to 8.7 million SNPs in up to 86 577 women of European descent from the Early Growth Genetics (EGG) Consortium and the UK Biobank. We used structural equation modelling (SEM) and analyses of mother-child pairs to quantify the separate maternal and fetal genetic effects. Maternal SNPs at 10 loci (MTNR1B, HMGA2, SH2B3, KCNAB1, L3MBTL3, GCK, EBF1, TCF7L2, ACTL9, CYP3A7) were associated with offspring birth weight at P < 5 {\^A} 10 {\`A}8 . In SEM analyses, at least 7 of the 10 associations were consistent with effects of the maternal genotype acting via the intrauterine environment, rather than via effects of shared alleles with the fetus. Variants, or correlated proxies, at many of the loci had been previously associated with adult traits, including fasting glucose (MTNR1B, GCK and TCF7L2) and sex hormone levels (CYP3A7), and one (EBF1) with gestational duration. The identified associations indicate that genetic effects on maternal glucose, cytochrome P450 activity and gestational duration, and potentially on maternal blood pressure and immune function, are relevant for fetal growth. Further characterization of these associations in mechanistic and causal analyses will enhance understanding of the potentially modifiable maternal determinants of fetal growth, with the goal of reducing the morbidity and mortality associated with low and high birth weights.}, language = {en} } @article{PaijmansBarnettGilbertetal.2017, author = {Paijmans, Johanna L. A. and Barnett, Ross and Gilbert, M. Thomas P. and Zepeda-Mendoza, M. Lisandra and Reumer, Jelle W. F. and de Vos, John and Zazula, Grant and Nagel, Doris and Baryshnikov, Gennady F. and Leonard, Jennifer A. and Rohland, Nadin and Westbury, Michael V. and Barlow, Axel and Hofreiter, Michael}, title = {Evolutionary History of Saber-Toothed Cats Based on Ancient Mitogenomics}, series = {Current biology}, volume = {27}, journal = {Current biology}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2017.09.033}, pages = {3330 -- +}, year = {2017}, abstract = {Saber-toothed cats (Machairodontinae) are among the most widely recognized representatives of the now largely extinct Pleistocene megafauna. However, many aspects of their ecology, evolution, and extinction remain uncertain. Although ancient-DNA studies have led to huge advances in our knowledge of these aspects of many other megafauna species (e.g., mammoths and cave bears), relatively few ancient-DNA studies have focused on saber-toothed cats [1-3], and they have been restricted to short fragments of mitochondrial DNA. Here we investigate the evolutionary history of two lineages of saber-toothed cats (Smilodon and Homotherium) in relation to living carnivores and find that the Machairodontinae form a well-supported clade that is distinct from all living felids. We present partial mitochondrial genomes from one S. populator sample and three Homotherium sp. samples, including the only Late Pleistocene Homotherium sample from Eurasia [4]. We confirm the identification of the unique Late Pleistocene European fossil through ancient-DNA analyses, thus strengthening the evidence that Homotherium occurred in Europe over 200,000 years later than previously believed. This in turn forces a re-evaluation of its demography and extinction dynamics. Within the Machairodontinae, we find a deep divergence between Smilodon and Homotherium (similar to 18 million years) but limited diversity between the American and European Homotherium specimens. The genetic data support the hypothesis that all Late Pleistocene (or post-Villafrancian) Homotherium should be considered a single species, H. latidens, which was previously proposed based on morphological data [5, 6].}, language = {en} } @article{RanLoveHeiberetal.2018, author = {Ran, Niva A. and Love, John A. and Heiber, Michael C. and Jiao, Xuechen and Hughes, Michael P. and Karki, Akchheta and Wang, Ming and Brus, Viktor V. and Wang, Hengbin and Neher, Dieter and Ade, Harald and Bazan, Guillermo C. and Thuc-Quyen Nguyen,}, title = {Charge generation and recombination in an organic solar cell with low energetic offsets}, series = {dvanced energy materials}, volume = {8}, journal = {dvanced energy materials}, number = {5}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201701073}, pages = {12}, year = {2018}, abstract = {Organic bulk heterojunction (BHJ) solar cells require energetic offsets between the donor and acceptor to obtain high short-circuit currents (J(SC)) and fill factors (FF). However, it is necessary to reduce the energetic offsets to achieve high open-circuit voltages (V-OC). Recently, reports have highlighted BHJ blends that are pushing at the accepted limits of energetic offsets necessary for high efficiency. Unfortunately, most of these BHJs have modest FF values. How the energetic offset impacts the solar cell characteristics thus remains poorly understood. Here, a comprehensive characterization of the losses in a polymer:fullerene BHJ blend, PIPCP:phenyl-C61-butyric acid methyl ester (PC61BM), that achieves a high V-OC (0.9 V) with very low energy losses (E-loss = 0.52 eV) from the energy of absorbed photons, a respectable J(SC) (13 mA cm(-2)), but a limited FF (54\%) is reported. Despite the low energetic offset, the system does not suffer from field-dependent generation and instead it is characterized by very fast nongeminate recombination and the presence of shallow traps. The charge-carrier losses are attributed to suboptimal morphology due to high miscibility between PIPCP and PC61BM. These results hold promise that given the appropriate morphology, the J(SC), V-OC, and FF can all be improved, even with very low energetic offsets.}, language = {en} } @misc{TrilckeParrD'Aprileetal.2023, author = {Trilcke, Peer and Parr, Rolf and D'Aprile, Iwan-Michelangelo and Kraus, Hans-Christof and Blomqvist, Clarissa and McGillen, Petra S. and Aus der Au, Carmen and Phillips, Alexander Robert and Helmer, Debora and Singer, R{\"u}diger and G{\"o}rner, R{\"u}diger and Berbig, Roland and Rose, Dirk and Wilhelms, Kerstin and Krause, Marcus and Hehle, Christine and Gretz, Daniela and Gfrereis, Heike and Lepp, Nicola and Morlok, Franziska and Haut, Gideon and Brechenmacher, Thomas and Stauffer, Isabelle and Lyon, John B. and Bachmann, Vera and Ewert, Michael and Immer, Nikolas and Vedder, Ulrike and Fischer, Hubertus and Becker, Sabina and Wegmann, Christoph and M{\"o}ller, Klaus-Peter and Schneider, Ulrike and Waszynski, Alexander and Wedel, Michael and Brehm, David and Wolpert, Georg}, title = {Fontanes Medien}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Philosophische Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Philosophische Reihe}, number = {178}, editor = {Trilcke, Peer}, issn = {1866-8380}, doi = {10.25932/publishup-57407}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-574079}, pages = {XIII, 672}, year = {2023}, abstract = {Theodor Fontane war, im durchaus modernen Sinne, ein Medienarbeiter: Als Presse-Agent in London lernte er die innovativste Presselandschaft seiner Zeit kennen; als Redakteur in Berlin leistete er journalistische K{\"a}rrnerarbeit; er schrieb Kritiken {\"u}ber das Theater, die bildende Kunst und die Literatur - und auch seine Romane wie seine Reiseb{\"u}cher sind stets Medienprodukte, als Serien in in Zeitungen und Zeitschriften platziert, bevor sie auf dem Buchmarkt erschienen. Der vorliegende Band dokumentiert die Ergebnisse eines internationalen Kongresses, veranstaltet 2019 vom Theodor-Fontane-Archiv in Potsdam. Die ebenso rasante wie umfassende Medialisierung und Vernetzung der Gesellschaft im Laufe des 19. Jahrhunderts wird dabei als produktive Voraussetzung der schriftstellerischen T{\"a}tigkeit Fontanes begriffen. Eingebettet in ein weit verzweigtes Netz der Korrespondenz und der postalischen Textzirkulation, vertraut mit den Routinen und Publika der periodischen Massenpresse, f{\"u}r die er sein Leben lang schrieb, und auf vielf{\"a}ltige Weise gepr{\"a}gt von der visuellen Kultur seiner Zeit wird Theodor Fontane als gleichermaßen journalistisch versierter wie {\"a}sthetisch sensibler Grenzg{\"a}nger erkennbar.}, language = {de} } @inproceedings{TrilckeParrD'Aprileetal.2022, author = {Trilcke, Peer and Parr, Rolf and D'Aprile, Iwan-Michelangelo and Kraus, Hans-Christof and Blomqvist, Clarissa and McGillen, Petra S. and Aus der Au, Carmen and Phillips, Alexander Robert and Helmer, Debora and Singer, R{\"u}diger and G{\"o}rner, R{\"u}diger and Berbig, Roland and Rose, Dirk and Wilhelms, Kerstin and Krause, Marcus and Hehle, Christine and Gretz, Daniela and Gfrereis, Heike and Lepp, Nicola and Morlok, Franziska and Haut, Gideon and Brechenmacher, Thomas and Stauffer, Isabelle and Lyon, John B. and Bachmann, Vera and Ewert, Michael and Immer, Nikolas and Vedder, Ulrike and Fischer, Hubertus and Becker, Sabina and Wegmann, Christoph and M{\"o}ller, Klaus-Peter and Schneider, Ulrike and Waszynski, Alexander and Wedel, Michael and Brehm, David and Wolpert, Georg}, title = {Fontanes Medien}, editor = {Trilcke, Peer}, publisher = {De Gruyter}, address = {Berlin}, isbn = {978-3-11-073330-3}, doi = {10.1515/9783110733235}, pages = {XIII, 672}, year = {2022}, abstract = {Theodor Fontane war, im durchaus modernen Sinne, ein Medienarbeiter: Als Presse-Agent in London lernte er die innovativste Presselandschaft seiner Zeit kennen; als Redakteur in Berlin leistete er journalistische K{\"a}rrnerarbeit; er schrieb Kritiken {\"u}ber das Theater, die bildende Kunst und die Literatur - und auch seine Romane wie seine Reiseb{\"u}cher sind stets Medienprodukte, als Serien in in Zeitungen und Zeitschriften platziert, bevor sie auf dem Buchmarkt erschienen. Der vorliegende Band dokumentiert die Ergebnisse eines internationalen Kongresses, veranstaltet 2019 vom Theodor-Fontane-Archiv in Potsdam. Die ebenso rasante wie umfassende Medialisierung und Vernetzung der Gesellschaft im Laufe des 19. Jahrhunderts wird dabei als produktive Voraussetzung der schriftstellerischen T{\"a}tigkeit Fontanes begriffen. Eingebettet in ein weit verzweigtes Netz der Korrespondenz und der postalischen Textzirkulation, vertraut mit den Routinen und Publika der periodischen Massenpresse, f{\"u}r die er sein Leben lang schrieb, und auf vielf{\"a}ltige Weise gepr{\"a}gt von der visuellen Kultur seiner Zeit wird Theodor Fontane als gleichermaßen journalistisch versierter wie {\"a}sthetisch sensibler Grenzg{\"a}nger erkennbar.}, language = {de} } @article{KumarGoodwinUhouseetal.2015, author = {Kumar, Kevin K. and Goodwin, Cody R. and Uhouse, Michael A. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and McLean, John A. and Bowman, Aaron B.}, title = {Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status}, series = {Metallomics}, volume = {7}, journal = {Metallomics}, publisher = {RSC Publ.}, address = {Cambridge}, issn = {1756-591X}, doi = {10.1039/C4MT00223G}, pages = {363 -- 370}, year = {2015}, abstract = {Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity.}, language = {en} } @misc{KumarGoodwinUhouseetal.2015, author = {Kumar, Kevin K. and Goodwin, Cody R. and Uhouse, Michael A. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and McLean, John A. and Bowman, Aaron B.}, title = {Untargeted metabolic profiling identifies interactions between Huntington's disease and neuronal manganese status}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94314}, pages = {363 -- 370}, year = {2015}, abstract = {Manganese (Mn) is an essential micronutrient for development and function of the nervous system. Deficiencies in Mn transport have been implicated in the pathogenesis of Huntington's disease (HD), an autosomal dominant neurodegenerative disorder characterized by loss of medium spiny neurons of the striatum. Brain Mn levels are highest in striatum and other basal ganglia structures, the most sensitive brain regions to Mn neurotoxicity. Mouse models of HD exhibit decreased striatal Mn accumulation and HD striatal neuron models are resistant to Mn cytotoxicity. We hypothesized that the observed modulation of Mn cellular transport is associated with compensatory metabolic responses to HD pathology. Here we use an untargeted metabolomics approach by performing ultraperformance liquid chromatography-ion mobility-mass spectrometry (UPLC-IM-MS) on control and HD immortalized mouse striatal neurons to identify metabolic disruptions under three Mn exposure conditions, low (vehicle), moderate (non-cytotoxic) and high (cytotoxic). Our analysis revealed lower metabolite levels of pantothenic acid, and glutathione (GSH) in HD striatal cells relative to control cells. HD striatal cells also exhibited lower abundance and impaired induction of isobutyryl carnitine in response to increasing Mn exposure. In addition, we observed induction of metabolites in the pentose shunt pathway in HD striatal cells after high Mn exposure. These findings provide metabolic evidence of an interaction between the HD genotype and biologically relevant levels of Mn in a striatal cell model with known HD by Mn exposure interactions. The metabolic phenotypes detected support existing hypotheses that changes in energetic processes underlie the pathobiology of both HD and Mn neurotoxicity.}, language = {en} } @inproceedings{TidballKumarBryanetal.2015, author = {Tidball, Andrew M. and Kumar, Kevin K. and Bryan, Miles R. and Bichell, Terry Jo and Horning, Kyle and Uhouse, Michael A. and Goodwin, Cody R. and Bornhorst, Julia and Schwerdtle, Tanja and Neely, Maja Diana and McClean, John A. and Aschner, Michael A. and Bowman, Aaron B.}, title = {Deficits in neural responses to manganese exposure in Huntington's disease models}, series = {Neurotoxicology and teratology}, volume = {49}, booktitle = {Neurotoxicology and teratology}, publisher = {Elsevier}, address = {Oxford}, issn = {0892-0362}, doi = {10.1016/j.ntt.2015.04.022}, pages = {105 -- 105}, year = {2015}, language = {en} } @article{KumarGoodwinUhouseetal.2015, author = {Kumar, Kevin K. and Goodwin, Cody R. and Uhouse, Michael A. and Bornhorst, Julia and Schwerdtle, Tanja and Aschner, Michael A. and McLean, John A. and Bowman, Aaron B.}, title = {Untargeted metabolic profiling identifies interactions between}, series = {Metallomics : integrated biometal science}, volume = {7}, journal = {Metallomics : integrated biometal science}, number = {2}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1756-5901}, doi = {10.1039/c4mt00223g}, pages = {363 -- 370}, year = {2015}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2016, author = {Abdalla, Hassan E. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Andersson, T. and Ang{\"u}ner, Ekrem Oǧuzhan and Arrieta, M. and Aubert, Pierre and Backes, Michael and Balzer, Arnim and Barnard, Michelle and Becherini, Yvonne and Tjus, J. Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Birsin, E. and Blackwell, R. and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Capasso, M. and Carr, John and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chen, Andrew and Chevalier, J. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Condon, B. and Conrad, Jan and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, C. and Devin, J. and de Wilt, P. and Djannati-Ataie, A. and Domainko, W. and Donath, A. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, D. and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, A. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kerszberg, D. and Khelifi, B. and Kieffer, M. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Liu, R. and Lohse, T. and Lorentz, M. and Lypova, I. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, Michael and Meintjes, P. J. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oettl, S. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reimer, A. and Reimer, O. and Renaud, M. and Reyes, R. de los and Rieger, F. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, D. and Sanchez, David M. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Settimo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tluczykont, M. and Trichard, C. and Tuffs, R. and van der Walt, J. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywucka, N.}, title = {HESS Limits on Linelike Dark Matter Signatures in the 100 GeV to 2 TeV Energy Range Close to the Galactic Center}, series = {Physical review letters}, volume = {117}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, organization = {HESS Collaboration}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.117.151302}, pages = {7}, year = {2016}, abstract = {A search for dark matter linelike signals iss performed in the vicinity of the Galactic Center by the H.E.S.S. experiment on observational data taken in 2014. An unbinned likelihood analysis iss developed to improve the sensitivity to linelike signals. The upgraded analysis along with newer data extend the energy coverage of the previous measurement down to 100 GeV. The 18 h of data collected with the H.E.S.S. array allow one to rule out at 95\% C.L. the presence of a 130 GeV line (at l = -1.5 degrees, b = 0 degrees and for a dark matter profile centered at this location) previously reported in Fermi-LAT data. This new analysis overlaps significantly in energy with previous Fermi-LAT and H.E.S.S. results. No significant excess associated with dark matter annihilations was found in the energy range of 100 GeV to 2 TeV and upper limits on the gamma-ray flux and the velocity weighted annihilation cross section are derived adopting an Einasto dark matter halo profile. Expected limits for present and future large statistics H.E.S.S. observations are also given.}, language = {en} } @article{EichlerRabeSalzwedeletal.2017, author = {Eichler, Sarah and Rabe, Sophie and Salzwedel, Annett and Mueller, Steffen and Stoll, Josefine and Tilgner, Nina and John, Michael and Wegscheider, Karl and Mayer, Frank and V{\"o}ller, Heinz}, title = {Effectiveness of an interactive telerehabilitation system with home-based exercise training in patients after total hip or knee replacement: study protocol for a multicenter, superiority, no-blinded randomized controlled trial}, series = {Trials}, volume = {18}, journal = {Trials}, publisher = {BioMed Central}, address = {London}, issn = {1745-6215}, doi = {10.1186/s13063-017-2173-3}, pages = {7}, year = {2017}, abstract = {Background: Total hip or knee replacement is one of the most frequently performed surgical procedures. Physical rehabilitation following total hip or knee replacement is an essential part of the therapy to improve functional outcomes and quality of life. After discharge from inpatient rehabilitation, a subsequent postoperative exercise therapy is needed to maintain functional mobility. Telerehabilitation may be a potential innovative treatment approach. We aim to investigate the superiority of an interactive telerehabilitation intervention for patients after total hip or knee replacement, in comparison to usual care, regarding physical performance, functional mobility, quality of life and pain. Methods/design: This is an open, randomized controlled, multicenter superiority study with two prospective arms. One hundred and ten eligible and consenting participants with total knee or hip replacement will be recruited at admission to subsequent inpatient rehabilitation. After comprehensive, 3-week, inpatient rehabilitation, the intervention group performs a 3-month, interactive, home-based exercise training with a telerehabilitation system. For this purpose, the physiotherapist creates an individual training plan out of 38 different strength and balance exercises which were implemented in the system. Data about the quality and frequency of training are transmitted to the physiotherapist for further adjustment. Communication between patient and physiotherapist is possible with the system. The control group receives voluntary, usual aftercare programs. Baseline assessments are investigated after discharge from rehabilitation; final assessments 3 months later. The primary outcome is the difference in improvement between intervention and control group in 6-minute walk distance after 3 months. Secondary outcomes include differences in the Timed Up and Go Test, the Five-Times-Sit-to-Stand Test, the Stair Ascend Test, the Short-Form 36, the Western Ontario and McMaster Universities Osteoarthritis Index, the International Physical Activity Questionnaire, and postural control as well as gait and kinematic parameters of the lower limbs. Baseline-adjusted analysis of covariance models will be used to test for group differences in the primary and secondary endpoints. Discussion: We expect the intervention group to benefit from the interactive, home-based exercise training in many respects represented by the study endpoints. If successful, this approach could be used to enhance the access to aftercare programs, especially in structurally weak areas.}, language = {en} } @article{WochatzTilgnerMuelleretal.2019, author = {Wochatz, Monique and Tilgner, Nina and Mueller, Steffen and Rabe, Sophie and Eichler, Sarah and John, Michael and V{\"o}ller, Heinz and Mayer, Frank}, title = {Reliability and validity of the Kinect V2 for the assessment of lower extremity rehabilitation exercises}, series = {Gait \& posture}, volume = {70}, journal = {Gait \& posture}, publisher = {Elsevier}, address = {Clare}, issn = {0966-6362}, doi = {10.1016/j.gaitpost.2019.03.020}, pages = {330 -- 335}, year = {2019}, abstract = {Research question: The purpose of this study was to evaluate the test-retest reliability of lower extremity kinematics during squat, hip abduction and lunge exercises captured by the Kinect and to evaluate the agreement to a reference 3D camera-based motion system. Methods: Twenty-one healthy individuals performed five repetitions of each lower limb exercise on two different days. Movements were simultaneously assessed by the Kinect and the reference 3D motion system. Joint angles and positions of the lower limb were calculated for sagittal and frontal plane. For the inter-session reliability and the agreement between the two systems standard error of measurement (SEM), bias with limits of agreement (LoA) and Pearson Correlation Coefficient (r) were calculated. Results: Parameters indicated varying reliability for the assessed joint angles and positions and decreasing reliability with increasing task complexity. Across all exercises, measurement deviations were shown especially for small movement amplitudes. Variability was acceptable for joint angles and positions during the squat, partially acceptable during the hip abduction and predominately inacceptable during the lunge. The agreement between systems was characterized by systematic errors. Overestimations by the Kinect were apparent for hip flexion during the squat and hip abduction/adduction during the hip abduction exercise as well as for the knee positions during the lunge. Knee and hip flexion during hip abduction and lunge were underestimated by the Kinect. Significance: The Kinect system can reliably assess lower limb joint angles and positions during simple exercises. The validity of the system is however restricted. An application in the field of early orthopedic rehabilitation without further development of post-processing techniques seems so far limited.}, language = {en} } @unpublished{WalzAdrianGilbertetal.2011, author = {Walz, Norbert and Adrian, Rita and Gilbert, John J. and Monaghan, Michael T. and Weithoff, Guntram and Zimmermann-Timm, Heike}, title = {Preface}, series = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, volume = {662}, journal = {Hydrobiologia : acta hydrobiologica, hydrographica, limnologica et protistologica}, number = {1}, publisher = {Springer}, address = {Dordrecht}, issn = {0018-8158}, doi = {10.1007/s10750-010-0514-2}, pages = {1 -- 4}, year = {2011}, language = {en} } @article{InduliChelotiWasunaetal.2012, author = {Induli, Martha and Cheloti, Michael and Wasuna, Antonina and Wekesa, Ingrid and Wanjohi, John M. and Byamukama, Robert and Heydenrich, Matthias and Makayoto, Moses and Yenesew, Abiy}, title = {Naphthoquinones from the roots of Aloe secundiflora}, series = {Phytochemistry letters}, volume = {5}, journal = {Phytochemistry letters}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2012.04.014}, pages = {506 -- 509}, year = {2012}, abstract = {Two new naphthoquinones, 5-hydroxy-3,6-dimethoxy-2-methylnaphthalene-1,4-dione and 5,8-dihydroxy-3-methoxy-2-methylnaphthalene-1,4-dione, were isolated from the roots of Aloe secundiflora together with the known compounds chrysophanol, helminthosporin, isoxanthorin, ancistroquinone C, aloesaponarins I and II, aloesaponols I and II, laccaic acid D methyl ester and asphodelin. The structures were elucidated based on spectroscopic evidence. This appears to be the first report on the occurrence of naphthoquinones in the genus Aloe. Aloesaponarin I and 5-hydroxy-3,6-dimethoxy-2-methylnaphthalene-1,4-dione showed anti-bacterial activity against Mycobacterium tuberculosis with MIC values of 21-23 mu g/mL in the Microplate Alamar Blue Assay (MABA) and Low Oxygen Recovery Assay (LORA); 5-hydroxy-3,6-dimethoxy-2-methylnaphthalene-1,4-dione also showed cytotoxicity against the Vero cell line (IC50 = 10.2 mu g/mL).}, language = {en} } @article{EichlerSalzwedelRabeetal.2019, author = {Eichler, Sarah and Salzwedel, Annett and Rabe, Sophie and Mueller, Steffen and Mayer, Frank and Wochatz, Monique and Hadzic, Miralem and John, Michael and Wegscheider, Karl and V{\"o}ller, Heinz}, title = {The Effectiveness of Telerehabilitation as a Supplement to Rehabilitation in Patients After Total Knee or Hip Replacement}, series = {JMIR Rehabilitation and Assistive Technologies}, volume = {6}, journal = {JMIR Rehabilitation and Assistive Technologies}, number = {2}, publisher = {jmir rehab}, address = {Toronto}, issn = {2369-2529}, doi = {10.2196/14236}, pages = {12}, year = {2019}, abstract = {Background: Telerehabilitation can contribute to the maintenance of successful rehabilitation regardless of location and time. The aim of this study was to investigate a specific three-month interactive telerehabilitation routine regarding its effectiveness in assisting patients with physical functionality and with returning to work compared to typical aftercare. Objective: The aim of the study was to investigate a specific three-month interactive telerehabilitation with regard to effectiveness in functioning and return to work compared to usual aftercare. Methods: From August 2016 to December 2017, 111 patients (mean 54.9 years old; SD 6.8; 54.3\% female) with hip or knee replacement were enrolled in the randomized controlled trial. At discharge from inpatient rehabilitation and after three months, their distance in the 6-minute walk test was assessed as the primary endpoint. Other functional parameters, including health related quality of life, pain, and time to return to work, were secondary endpoints. Results: Patients in the intervention group performed telerehabilitation for an average of 55.0 minutes (SD 9.2) per week. Adherence was high, at over 75\%, until the 7th week of the three-month intervention phase. Almost all the patients and therapists used the communication options. Both the intervention group (average difference 88.3 m; SD 57.7; P=.95) and the control group (average difference 79.6 m; SD 48.7; P=.95) increased their distance in the 6-minute-walk-test. Improvements in other functional parameters, as well as in quality of life and pain, were achieved in both groups. The higher proportion of working patients in the intervention group (64.6\%; P=.01) versus the control group (46.2\%) is of note. Conclusions: The effect of the investigated telerehabilitation therapy in patients following knee or hip replacement was equivalent to the usual aftercare in terms of functional testing, quality of life, and pain. Since a significantly higher return-to-work rate could be achieved, this therapy might be a promising supplement to established aftercare.}, language = {en} } @misc{DommainAndamaMcDonoughetal.2020, author = {Dommain, Ren{\´e} and Andama, Morgan and McDonough, Molly M. and Prado, Natalia A. and Goldhammer, Tobias and Potts, Richard and Maldonado, Jes{\´u}s E. and Nkurunungi, John Bosco and Campana, Michael G.}, title = {The Challenges of Reconstructing Tropical Biodiversity With Sedimentary Ancient DNA}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {970}, issn = {1866-8372}, doi = {10.25932/publishup-47430}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-474305}, pages = {28}, year = {2020}, abstract = {Sedimentary ancient DNA has been proposed as a key methodology for reconstructing biodiversity over time. Yet, despite the concentration of Earth's biodiversity in the tropics, this method has rarely been applied in this region. Moreover, the taphonomy of sedimentary DNA, especially in tropical environments, is poorly understood. This study elucidates challenges and opportunities of sedimentary ancient DNA approaches for reconstructing tropical biodiversity. We present shotgun-sequenced metagenomic profiles and DNA degradation patterns from multiple sediment cores from Mubwindi Swamp, located in Bwindi Impenetrable Forest (Uganda), one of the most diverse forests in Africa. We describe the taxonomic composition of the sediments covering the past 2200 years and compare the sedimentary DNA data with a comprehensive set of environmental and sedimentological parameters to unravel the conditions of DNA degradation. Consistent with the preservation of authentic ancient DNA in tropical swamp sediments, DNA concentration and mean fragment length declined exponentially with age and depth, while terminal deamination increased with age. DNA preservation patterns cannot be explained by any environmental parameter alone, but age seems to be the primary driver of DNA degradation in the swamp. Besides degradation, the presence of living microbial communities in the sediment also affects DNA quantity. Critically, 92.3\% of our metagenomic data of a total 81.8 million unique, merged reads cannot be taxonomically identified due to the absence of genomic references in public databases. Of the remaining 7.7\%, most of the data (93.0\%) derive from Bacteria and Archaea, whereas only 0-5.8\% are from Metazoa and 0-6.9\% from Viridiplantae, in part due to unbalanced taxa representation in the reference data. The plant DNA record at ordinal level agrees well with local pollen data but resolves less diversity. Our animal DNA record reveals the presence of 41 native taxa (16 orders) including Afrotheria, Carnivora, and Ruminantia at Bwindi during the past 2200 years. Overall, we observe no decline in taxonomic richness with increasing age suggesting that several-thousand-year-old information on past biodiversity can be retrieved from tropical sediments. However, comprehensive genomic surveys of tropical biota need prioritization for sedimentary DNA to be a viable methodology for future tropical biodiversity studies.}, language = {en} } @misc{LopezdeGuerenuBastianWessigetal.2019, author = {L{\´o}pez de Guere{\~n}u, Anna and Bastian, Philipp and Wessig, Pablo and John, Leonard and Kumke, Michael Uwe}, title = {Energy transfer between tm-doped upconverting nanoparticles and a small organic dye with large stokes shift}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {961}, issn = {1866-8372}, doi = {10.25932/publishup-47224}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-472240}, pages = {19}, year = {2019}, abstract = {Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF4-based UCNP co-doped with Yb3+ and Tm3+ as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d ']bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17\%). Nanoparticles with Tm3+ only in the shell have revealed the highest RET efficiencies (up to 51\%) despite the compromised luminescence due to surface quenching.}, language = {en} } @misc{EichlerSalzwedelRabeetal.2019, author = {Eichler, Sarah and Salzwedel, Annett and Rabe, Sophie and Mueller, Steffen and Mayer, Frank and Wochatz, Monique and Hadzic, Miralem and John, Michael and Wegscheider, Karl and V{\"o}ller, Heinz}, title = {The Effectiveness of Telerehabilitation as a Supplement to Rehabilitation in Patients After Total Knee or Hip Replacement}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {589}, issn = {1866-8364}, doi = {10.25932/publishup-44096}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-440965}, pages = {14}, year = {2019}, abstract = {Background: Telerehabilitation can contribute to the maintenance of successful rehabilitation regardless of location and time. The aim of this study was to investigate a specific three-month interactive telerehabilitation routine regarding its effectiveness in assisting patients with physical functionality and with returning to work compared to typical aftercare. Objective: The aim of the study was to investigate a specific three-month interactive telerehabilitation with regard to effectiveness in functioning and return to work compared to usual aftercare. Methods: From August 2016 to December 2017, 111 patients (mean 54.9 years old; SD 6.8; 54.3\% female) with hip or knee replacement were enrolled in the randomized controlled trial. At discharge from inpatient rehabilitation and after three months, their distance in the 6-minute walk test was assessed as the primary endpoint. Other functional parameters, including health related quality of life, pain, and time to return to work, were secondary endpoints. Results: Patients in the intervention group performed telerehabilitation for an average of 55.0 minutes (SD 9.2) per week. Adherence was high, at over 75\%, until the 7th week of the three-month intervention phase. Almost all the patients and therapists used the communication options. Both the intervention group (average difference 88.3 m; SD 57.7; P=.95) and the control group (average difference 79.6 m; SD 48.7; P=.95) increased their distance in the 6-minute-walk-test. Improvements in other functional parameters, as well as in quality of life and pain, were achieved in both groups. The higher proportion of working patients in the intervention group (64.6\%; P=.01) versus the control group (46.2\%) is of note. Conclusions: The effect of the investigated telerehabilitation therapy in patients following knee or hip replacement was equivalent to the usual aftercare in terms of functional testing, quality of life, and pain. Since a significantly higher return-to-work rate could be achieved, this therapy might be a promising supplement to established aftercare.}, language = {en} } @article{HaubitzJohnFreyseetal.2020, author = {Haubitz, Toni and John, Leonard and Freyse, Daniel and Wessig, Pablo and Kumke, Michael Uwe}, title = {Investigating the Sulfur "Twist" on the Photophysics of DBD Dyes}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {124}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.0c01880}, pages = {4345 -- 4353}, year = {2020}, abstract = {The so-called DBD ([1,3]dioxolo[4,5-f][1,3]benzodioxole) dyes are a new class of fluorescent dyes, with tunable photophysical properties like absorption, fluorescence lifetime, and Stokes shift. With the development of sulfur based DBDs, this dye class is extended even further for possible applications in spectroscopy and microscopy. In this paper we are investigating the basic photophysical properties and their implications for future applications for S-4-DBD as well as O-4-DBD. On the basis of time-resolved laser fluorescence spectroscopy, transient absorption spectroscopy, and UV/vis-spectroscopy, we determined the rate constants of the radiative and nonradiative deactivation processes as well as the energy of respective electronic states involved in the electronic deactivation of S-4-DBD and of O-4-DBD. For S-4-DBD we unraveled the triplet formation with intersystem crossing quantum yields of up to 80\%. By TD-DFT calculations we estimated a triplet energy of around 13500-14700 cm(-1) depending on the DBD dye and solvent. Through solvent dependent measurements, we found quadrupole moments in the range of 2 B.}, language = {en} } @article{JohnsonChenStrakaetal.2018, author = {Johnson, Sean D. and Chen, Hsiao-Wen and Straka, Lorrie and Schaye, Joop and Cantalupo, Sebastiano and Wendt, Martin and Muzahid, Sowgat and Bouch{\´e}, Nicolas and Herenz, Edmund Christian and Kollatschny, Wolfram and Mulchaey, John S. and Marino, Raffaella A. and Maseda, Michael and Wisotzki, Lutz}, title = {Galaxy and quasar fueling caught in the act from the intragroup to the interstellar medium}, series = {The astrophysical journal : Part 2, Letters}, volume = {869}, journal = {The astrophysical journal : Part 2, Letters}, number = {1}, publisher = {IOP Publishing Ltd. (Bristol)}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/aaf1cf}, pages = {7}, year = {2018}, abstract = {We report the discovery of six spatially extended (10-100 kpc) line-emitting nebulae in the z approximate to 0.57 galaxy group hosting PKS 0405-123, one of the most luminous quasars at z < 1. The discovery is enabled by the Multi Unit Spectroscopic Explorer and provides tantalizing evidence connecting large-scale gas streams with nuclear activity on scales of <10 proper kpc (pkpc). One of the nebulae exhibits a narrow, filamentary morphology extending over 50 pkpc toward the quasar with narrow internal velocity dispersion (50 km s(-1)) and is not associated with any detected galaxies, consistent with a cool intragroup medium filament. Two of the nebulae are 10 pkpc north and south of the quasar with tidal-arm-like morphologies. These two nebulae, along with a continuum-emitting arm extending 60 pkpc from the quasar, are signatures of interactions that are expected to redistribute angular momentum in the host interstellar medium (ISM) to facilitate star formation and quasar fueling in the nucleus. The three remaining nebulae are among the largest and most luminous [O III] emitting "blobs" known (1400-2400 pkpc(2)) and correspond both kinematically and morphologically to interacting galaxy pairs in the quasar host group, consistent with arising from stripped ISM rather than large-scale quasar outflows. The presence of these large- and small-scale nebulae in the vicinity of a luminous quasar bears significantly on the effect of large-scale environment on galaxy and black hole fueling, providing a natural explanation for the previously known correlation between quasar luminosity and cool circumgalactic medium.}, language = {en} } @article{FagesHanghojKhanetal.2019, author = {Fages, Antoine and Hanghoj, Kristian and Khan, Naveed and Gaunitz, Charleen and Seguin-Orlando, Andaine and Leonardi, Michela and Constantz, Christian McCrory and Gamba, Cristina and Al-Rasheid, Khaled A. S. and Albizuri, Silvia and Alfarhan, Ahmed H. and Allentoft, Morten and Alquraishi, Saleh and Anthony, David and Baimukhanov, Nurbol and Barrett, James H. and Bayarsaikhan, Jamsranjav and Benecke, Norbert and Bernaldez-Sanchez, Eloisa and Berrocal-Rangel, Luis and Biglari, Fereidoun and Boessenkool, Sanne and Boldgiv, Bazartseren and Brem, Gottfried and Brown, Dorcas and Burger, Joachim and Crubezy, Eric and Daugnora, Linas and Davoudi, Hossein and Damgaard, Peter de Barros and de Chorro y de Villa-Ceballos, Maria de los Angeles and Deschler-Erb, Sabine and Detry, Cleia and Dill, Nadine and Oom, Maria do Mar and Dohr, Anna and Ellingvag, Sturla and Erdenebaatar, Diimaajav and Fathi, Homa and Felkel, Sabine and Fernandez-Rodriguez, Carlos and Garcia-Vinas, Esteban and Germonpre, Mietje and Granado, Jose D. and Hallsson, Jon H. and Hemmer, Helmut and Hofreiter, Michael and Kasparov, Aleksei and Khasanov, Mutalib and Khazaeli, Roya and Kosintsev, Pavel and Kristiansen, Kristian and Kubatbek, Tabaldiev and Kuderna, Lukas and Kuznetsov, Pavel and Laleh, Haeedeh and Leonard, Jennifer A. and Lhuillier, Johanna and von Lettow-Vorbeck, Corina Liesau and Logvin, Andrey and Lougas, Lembi and Ludwig, Arne and Luis, Cristina and Arruda, Ana Margarida and Marques-Bonet, Tomas and Silva, Raquel Matoso and Merz, Victor and Mijiddorj, Enkhbayar and Miller, Bryan K. and Monchalov, Oleg and Mohaseb, Fatemeh A. and Morales, Arturo and Nieto-Espinet, Ariadna and Nistelberger, Heidi and Onar, Vedat and Palsdottir, Albina H. and Pitulko, Vladimir and Pitskhelauri, Konstantin and Pruvost, Melanie and Sikanjic, Petra Rajic and Papesa, Anita Rapan and Roslyakova, Natalia and Sardari, Alireza and Sauer, Eberhard and Schafberg, Renate and Scheu, Amelie and Schibler, Jorg and Schlumbaum, Angela and Serrand, Nathalie and Serres-Armero, Aitor and Shapiro, Beth and Seno, Shiva Sheikhi and Shevnina, Irina and Shidrang, Sonia and Southon, John and Star, Bastiaan and Sykes, Naomi and Taheri, Kamal and Taylor, William and Teegen, Wolf-Rudiger and Vukicevic, Tajana Trbojevic and Trixl, Simon and Tumen, Dashzeveg and Undrakhbold, Sainbileg and Usmanova, Emma and Vahdati, Ali and Valenzuela-Lamas, Silvia and Viegas, Catarina and Wallner, Barbara and Weinstock, Jaco and Zaibert, Victor and Clavel, Benoit and Lepetz, Sebastien and Mashkour, Marjan and Helgason, Agnar and Stefansson, Kari and Barrey, Eric and Willerslev, Eske and Outram, Alan K. and Librado, Pablo and Orlando, Ludovic}, title = {Tracking five millennia of horse management with extensive ancient genome time series}, series = {Cell}, volume = {177}, journal = {Cell}, number = {6}, publisher = {Cell Press}, address = {Cambridge}, issn = {0092-8674}, doi = {10.1016/j.cell.2019.03.049}, pages = {1419 -- 1435}, year = {2019}, abstract = {Horse domestication revolutionized warfare and accelerated travel, trade, and the geographic expansion of languages. Here, we present the largest DNA time series for a non-human organism to date, including genome-scale data from 149 ancient animals and 129 ancient genomes (>= 1-fold coverage), 87 of which are new. This extensive dataset allows us to assess the modem legacy of past equestrian civilisations. We find that two extinct horse lineages existed during early domestication, one at the far western (Iberia) and the other at the far eastern range (Siberia) of Eurasia. None of these contributed significantly to modern diversity. We show that the influence of Persian-related horse lineages increased following the Islamic conquests in Europe and Asia. Multiple alleles associated with elite-racing, including at the MSTN "speed gene," only rose in popularity within the last millennium. Finally, the development of modem breeding impacted genetic diversity more dramatically than the previous millennia of human management.}, language = {en} } @article{DenglerWagnerDembiczetal.2018, author = {Dengler, J{\"u}rgen and Wagner, Viktoria and Dembicz, Iwona and Garcia-Mijangos, Itziar and Naqinezhad, Alireza and Boch, Steffen and Chiarucci, Alessandro and Conradi, Timo and Filibeck, Goffredo and Guarino, Riccardo and Janisova, Monika and Steinbauer, Manuel J. and Acic, Svetlana and Acosta, Alicia T. R. and Akasaka, Munemitsu and Allers, Marc-Andre and Apostolova, Iva and Axmanova, Irena and Bakan, Branko and Baranova, Alina and Bardy-Durchhalter, Manfred and Bartha, Sandor and Baumann, Esther and Becker, Thomas and Becker, Ute and Belonovskaya, Elena and Bengtsson, Karin and Benito Alonso, Jose Luis and Berastegi, Asun and Bergamini, Ariel and Bonini, Ilaria and Bruun, Hans Henrik and Budzhak, Vasyl and Bueno, Alvaro and Antonio Campos, Juan and Cancellieri, Laura and Carboni, Marta and Chocarro, Cristina and Conti, Luisa and Czarniecka-Wiera, Marta and De Frenne, Pieter and Deak, Balazs and Didukh, Yakiv P. and Diekmann, Martin and Dolnik, Christian and Dupre, Cecilia and Ecker, Klaus and Ermakov, Nikolai and Erschbamer, Brigitta and Escudero, Adrian and Etayo, Javier and Fajmonova, Zuzana and Felde, Vivian A. and Fernandez Calzado, Maria Rosa and Finckh, Manfred and Fotiadis, Georgios and Fracchiolla, Mariano and Ganeva, Anna and Garcia-Magro, Daniel and Gavilan, Rosario G. and Germany, Markus and Giladi, Itamar and Gillet, Francois and Giusso del Galdo, Gian Pietro and Gonzalez, Jose M. and Grytnes, John-Arvid and Hajek, Michal and Hajkova, Petra and Helm, Aveliina and Herrera, Mercedes and Hettenbergerova, Eva and Hobohm, Carsten and Huellbusch, Elisabeth M. and Ingerpuu, Nele and Jandt, Ute and Jeltsch, Florian and Jensen, Kai and Jentsch, Anke and Jeschke, Michael and Jimenez-Alfaro, Borja and Kacki, Zygmunt and Kakinuma, Kaoru and Kapfer, Jutta and Kavgaci, Ali and Kelemen, Andras and Kiehl, Kathrin and Koyama, Asuka and Koyanagi, Tomoyo F. and Kozub, Lukasz and Kuzemko, Anna and Kyrkjeeide, Magni Olsen and Landi, Sara and Langer, Nancy and Lastrucci, Lorenzo and Lazzaro, Lorenzo and Lelli, Chiara and Leps, Jan and Loebel, Swantje and Luzuriaga, Arantzazu L. and Maccherini, Simona and Magnes, Martin and Malicki, Marek and Marceno, Corrado and Mardari, Constantin and Mauchamp, Leslie and May, Felix and Michelsen, Ottar and Mesa, Joaquin Molero and Molnar, Zsolt and Moysiyenko, Ivan Y. and Nakaga, Yuko K. and Natcheva, Rayna and Noroozi, Jalil and Pakeman, Robin J. and Palpurina, Salza and Partel, Meelis and Paetsch, Ricarda and Pauli, Harald and Pedashenko, Hristo and Peet, Robert K. and Pielech, Remigiusz and Pipenbaher, Natasa and Pirini, Chrisoula and Pleskova, Zuzana and Polyakova, Mariya A. and Prentice, Honor C. and Reinecke, Jennifer and Reitalu, Triin and Pilar Rodriguez-Rojo, Maria and Rolecek, Jan and Ronkin, Vladimir and Rosati, Leonardo and Rosen, Ejvind and Ruprecht, Eszter and Rusina, Solvita and Sabovljevic, Marko and Maria Sanchez, Ana and Savchenko, Galina and Schuhmacher, Oliver and Skornik, Sonja and Sperandii, Marta Gaia and Staniaszek-Kik, Monika and Stevanovic-Dajic, Zora and Stock, Marin and Suchrow, Sigrid and Sutcliffe, Laura M. E. and Swacha, Grzegorz and Sykes, Martin and Szabo, Anna and Talebi, Amir and Tanase, Catalin and Terzi, Massimo and Tolgyesi, Csaba and Torca, Marta and Torok, Peter and Tothmeresz, Bela and Tsarevskaya, Nadezda and Tsiripidis, Ioannis and Tzonev, Rossen and Ushimaru, Atushi and Valko, Orsolya and van der Maarel, Eddy and Vanneste, Thomas and Vashenyak, Iuliia and Vassilev, Kiril and Viciani, Daniele and Villar, Luis and Virtanen, Risto and Kosic, Ivana Vitasovic and Wang, Yun and Weiser, Frank and Went, Julia and Wesche, Karsten and White, Hannah and Winkler, Manuela and Zaniewski, Piotr T. and Zhang, Hui and Ziv, Yaron and Znamenskiy, Sergey and Biurrun, Idoia}, title = {GrassPlot - a database of multi-scale plant diversity in Palaearctic grasslands}, series = {Phytocoenologia}, volume = {48}, journal = {Phytocoenologia}, number = {3}, publisher = {Cramer}, address = {Stuttgart}, issn = {0340-269X}, doi = {10.1127/phyto/2018/0267}, pages = {331 -- 347}, year = {2018}, abstract = {GrassPlot is a collaborative vegetation-plot database organised by the Eurasian Dry Grassland Group (EDGG) and listed in the Global Index of Vegetation-Plot Databases (GIVD ID EU-00-003). GrassPlot collects plot records (releves) from grasslands and other open habitats of the Palaearctic biogeographic realm. It focuses on precisely delimited plots of eight standard grain sizes (0.0001; 0.001;... 1,000 m(2)) and on nested-plot series with at least four different grain sizes. The usage of GrassPlot is regulated through Bylaws that intend to balance the interests of data contributors and data users. The current version (v. 1.00) contains data for approximately 170,000 plots of different sizes and 2,800 nested-plot series. The key components are richness data and metadata. However, most included datasets also encompass compositional data. About 14,000 plots have near-complete records of terricolous bryophytes and lichens in addition to vascular plants. At present, GrassPlot contains data from 36 countries throughout the Palaearctic, spread across elevational gradients and major grassland types. GrassPlot with its multi-scale and multi-taxon focus complements the larger international vegetationplot databases, such as the European Vegetation Archive (EVA) and the global database " sPlot". Its main aim is to facilitate studies on the scale-and taxon-dependency of biodiversity patterns and drivers along macroecological gradients. GrassPlot is a dynamic database and will expand through new data collection coordinated by the elected Governing Board. We invite researchers with suitable data to join GrassPlot. Researchers with project ideas addressable with GrassPlot data are welcome to submit proposals to the Governing Board.}, language = {en} } @article{LopezdeGuerenuBastianWessigetal.2019, author = {L{\´o}pez de Guere{\~n}u, Anna and Bastian, Philipp and Wessig, Pablo and John, Leonard and Kumke, Michael Uwe}, title = {Energy Transfer between Tm-Doped Upconverting Nanoparticles and a Small Organic Dye with Large Stokes Shift}, series = {Biosensors : open access journal}, volume = {9}, journal = {Biosensors : open access journal}, number = {1}, publisher = {MDPI}, address = {Basel}, issn = {2079-6374}, doi = {10.3390/bios9010009}, pages = {17}, year = {2019}, abstract = {Lanthanide-doped upconverting nanoparticles (UCNP) are being extensively studied for bioapplications due to their unique photoluminescence properties and low toxicity. Interest in RET applications involving UCNP is also increasing, but due to factors such as large sizes, ion emission distributions within the particles, and complicated energy transfer processes within the UCNP, there are still many questions to be answered. In this study, four types of core and core-shell NaYF4-based UCNP co-doped with Yb3+ and Tm3+ as sensitizer and activator, respectively, were investigated as donors for the Methyl 5-(8-decanoylbenzo[1,2-d:4,5-d ']bis([1,3]dioxole)-4-yl)-5-oxopentanoate (DBD-6) dye. The possibility of resonance energy transfer (RET) between UCNP and the DBD-6 attached to their surface was demonstrated based on the comparison of luminescence intensities, band ratios, and decay kinetics. The architecture of UCNP influenced both the luminescence properties and the energy transfer to the dye: UCNP with an inert shell were the brightest, but their RET efficiency was the lowest (17\%). Nanoparticles with Tm3+ only in the shell have revealed the highest RET efficiencies (up to 51\%) despite the compromised luminescence due to surface quenching.}, language = {en} } @article{HaubitzJohnWessigetal.2019, author = {Haubitz, Toni and John, Leonard and Wessig, Pablo and Kumke, Michael Uwe}, title = {Photophysics of Acyl- and Ester-DBD Dyes}, series = {the journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {123}, journal = {the journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {22}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.9b02973}, pages = {4717 -- 4726}, year = {2019}, abstract = {A new generation of wavelength-tunable, fluorescent dyes, so-called DBD ([1,3]dioxolo[4,5-f][1,3]benzodioxole) dyes, were developed a few years ago, and they showed great potential as probes, for example, for fluorescence microscopy. However, their photophysics is not fully explored and leaves open questions regarding their large fluorescence Stokes shifts and sensitivity to solvent conditions of differently substituted DBD dyes. To improve the understanding of the influence of the substitution pattern of the DBD dyes on their respective photophysics, transient absorption spectroscopy (TAS) was used, that is, a pump-probe experiment on the femtosecond timescale. TAS allows measurements of excited states, ground state recovery, solvent relaxation, and fluorescence properties on time scales of up to several nanoseconds. Two different DBD dye samples were investigated: aryl- and ester-substituted DBD dyes. Experiments were carried out in solvents with different polarities using different excitation energies and at different viscosities. Based on the experimental data and theoretical calculations, we were able to determine the conformational changes of the molecule due to electronic excitation and were able to investigate solvent relaxation processes for both types of DBD dyes. By generalizing the theory for quadrupole-induced solvent relaxation developed by Togashi et al., we derived quadrupole moments of both molecules in the ground and excited state. Our data showed differences in the binding of polar solvent molecules to the dyes depending on the substituent on the DBD dye. In the case of water as the solvent, an additional efficient quenching process in the electronically excited state was revealed, which was indicated by the observation of solvated electrons in the TAS signals.}, language = {en} } @article{CasselCarlsohnFroehlichetal.2016, author = {Cassel, Michael and Carlsohn, Anja and Fr{\"o}hlich, Katja and John, Mareike and Riegels, N. and Mayer, Frank}, title = {Tendon Adaptation to Sport-specific Loading in Adolescent Athletes}, series = {International journal of sports medicine}, volume = {37}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0035-1559772}, pages = {159 -- 164}, year = {2016}, abstract = {Tendon adaptation due to mechanical loading is controversially discussed. However, data concerning the development of tendon thickness in adolescent athletes is sparse. The purpose of this study was to examine possible differences in Achilles (AT) and patellar tendon (PT) thickness in adolescent athletes while considering age, gender and sport-specific loading. In 500 adolescent competitive athletes of 16 different sports and 40 recreational controls both ATs and PTs were sonographically measured. Subjects were divided into 2 age groups (< 13; \&\#8805; 13 years) and 6 sport type categories (ball, combat, and water sports, combined disciplines, cycling, controls). In addition, 3 risk groups (low, moderate, high) were created according to the athlete's risk of developing tendinopathy. AT and PT thickness did not significantly differ between age groups (AT/PT:<13: 5.4±0.7 mm/3.6±0.5 mm;\&\#8805;13: 5.3±0.7 mm/3.6±0.5 mm). In both age groups males presented higher tendon thickness than females (p<0.001). AT thickness was highest in ball sports/cyclists and lowest in controls (p\&\#8804;0.002). PT thickness was greatest in water sports and lowest in controls (p=0.02). High risk athletes presented slightly higher AT thickness compared to the low risk group (p=0.03). Increased AT and PT thickness in certain sport types compared to controls supports the hypothesis of structural tendon adaptation due to sport-specific loading.}, language = {en} } @article{LinleyBoeseSimmonsetal.2009, author = {Linley, John E. and Boese, Stefan H. and Simmons, Nicholas L. and Gray, Michael A.}, title = {A voltage-dependent Ca2+ influx pathway regulates the Ca2+-dependent Cl- conductance of renal IMCD-3 cells}, issn = {0022-2631}, doi = {10.1007/s00232-009-9186-0}, year = {2009}, abstract = {We have previously shown that the membrane conductance of mIMCD-3 cells at a holding potential of 0 mV is dominated by a Ca2+-dependent Cl- current (I-CLCA). Here we report that I-CLCA activity is also voltage dependent and that this dependence on voltage is linked to the opening of a novel Al3+-sensitive, voltage-dependent, Ca2+ influx pathway. Using whole-cell patch-clamp recordings at a physiological holding potential (-60 mV), I-CLCA was found to be inactive and resting currents were predominantly K+ selective. However, membrane depolarization to 0 mV resulted in a slow, sigmoidal, activation of I-CLCA (T (0.5) similar to 500 s), while repolarization in turn resulted in a monoexponential decay in I-CLCA (T (0.5) similar to 100 s). The activation of I-CLCA by depolarization was reduced by lowering extracellular Ca2+ and completely inhibited by buffering cytosolic Ca2+ with EGTA, suggesting a role for Ca2+ influx in the activation of I-CLCA. However, raising bulk cytosolic Ca2+ at -60 mV did not produce sustained I-CLCA activity. Therefore I-CLCA is dependent on both an increase in intracellular Ca2+ and depolarization to be active. We further show that membrane depolarization is coupled to opening of a Ca2+ influx pathway that displays equal permeability to Ca2+ and Ba2+ ions and that is blocked by extracellular Al3+ and La3+. Furthermore, Al3+ completely and reversibly inhibited depolarization-induced activation of I-CLCA, thereby directly linking Ca2+ influx to activation of I-CLCA. We speculate that during sustained membrane depolarization, calcium influx activates I-CLCA which functions to modulate NaCl transport across the apical membrane of IMCD cells.}, language = {en} } @article{SchorckChristliebCohenetal.2009, author = {Schorck, Torben and Christlieb, Norbert and Cohen, Judy G. and Beers, Timothy C. and Shectman, Steve and Thompson, Ian and McWilliam, Andrew and Bessell, Michael S. and Norris, John E. and Mel{\´e}ndez, Jorge and Ram{\"i}rez, Solange and Haynes, D. and Cass, Paul and Hartley, Malcolm and Russell, Ken and Watson, Fred and Zickgraf, Franz-Josef and Behnke, Berit and Fechner, Cora and Fuhrmeister, Birgit and Barklem, Paul S. and Edvardsson, Bengt and Frebel, Anna and Wisotzki, Lutz and Reimers, Dieter}, title = {The stellar content of the Hamburg/ESO survey : V. the metallicity distribution function of the Galactic halo}, issn = {0004-6361}, doi = {10.1051/0004-6361/200810925}, year = {2009}, abstract = {We determine the metallicity distribution function (MDF) of the Galactic halo by means of a sample of 1638 metal-poor stars selected from the Hamburg/ESO objective-prism survey (HES). The sample was corrected for minor biases introduced by the strategy for spectroscopic follow-up observations of the metal-poor candidates, namely "best and brightest stars first". Comparison of the metallicities [Fe/H] of the stars determined from moderate-resolution (i.e., R similar to 2000) follow-up spectra with results derived from abundance analyses based on high-resolution spectra (i.e., R > 20 000) shows that the [Fe/H] estimates used for the determination of the halo MDF are accurate to within 0.3 dex, once highly C-rich stars are eliminated. We determined the selection function of the HES, which must be taken into account for a proper comparison between the HES MDF with MDFs of other stellar populations or those predicted by models of Galactic chemical evolution. The latter show a reasonable agreement with the overall shape of the HES MDF for [Fe/H] > -3.6, but only a model of Salvadori et al. (2007) with a critical metallicity for low-mass star formation of Z(cr) = 10(-3.4) Z(circle dot) reproduces the sharp drop at [Fe/H] similar to -3.6 present in the HES MDF. Although currently about ten stars at [Fe/H] < -3.6 are known, the evidence for the existence of a tail of the halo MDF extending to [Fe/H] similar to -5.5 is weak from the sample considered in this paper, because it only includes two stars [Fe/H] < -3.6. Therefore, a comparison with theoretical models has to await larger statistically complete and unbiased samples. A comparison of the MDF of Galactic globular clusters and of dSph satellites to the Galaxy shows qualitative agreement with the halo MDF, derived from the HES, once the selection function of the latter is included. However, statistical tests show that the differences between these are still highly significant.}, language = {en} } @article{LimFriemelMarumetal.2013, author = {Lim, Sze Chern and Friemel, Martin and Marum, Justine E. and Tucker, Elena J. and Bruno, Damien L. and Riley, Lisa G. and Christodoulou, John and Kirk, Edwin P. and Boneh, Avihu and DeGennaro, Christine M. and Springer, Michael and Mootha, Vamsi K. and Rouault, Tracey A. and Leimk{\"u}hler, Silke and Thorburn, David R. and Compton, Alison G.}, title = {Mutations in LYRM4, encoding ironsulfur cluster biogenesis factor ISD11, cause deficiency of multiple respiratory chain complexes}, series = {Human molecular genetics}, volume = {22}, journal = {Human molecular genetics}, number = {22}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0964-6906}, doi = {10.1093/hmg/ddt295}, pages = {4460 -- 4473}, year = {2013}, abstract = {Ironsulfur clusters (ISCs) are important prosthetic groups that define the functions of many proteins. Proteins with ISCs (called ironsulfur or FeS proteins) are present in mitochondria, the cytosol, the endoplasmic reticulum and the nucleus. They participate in various biological pathways including oxidative phosphorylation (OXPHOS), the citric acid cycle, iron homeostasis, heme biosynthesis and DNA repair. Here, we report a homozygous mutation in LYRM4 in two patients with combined OXPHOS deficiency. LYRM4 encodes the ISD11 protein, which forms a complex with, and stabilizes, the sulfur donor NFS1. The homozygous mutation (c.203GT, p.R68L) was identified via massively parallel sequencing of 1000 mitochondrial genes (MitoExome sequencing) in a patient with deficiency of complexes I, II and III in muscle and liver. These three complexes contain ISCs. Sanger sequencing identified the same mutation in his similarly affected cousin, who had a more severe phenotype and died while a neonate. Complex IV was also deficient in her skeletal muscle. Several other FeS proteins were also affected in both patients, including the aconitases and ferrochelatase. Mutant ISD11 only partially complemented for an ISD11 deletion in yeast. Our in vitro studies showed that the l-cysteine desulfurase activity of NFS1 was barely present when co-expressed with mutant ISD11. Our findings are consistent with a defect in the early step of ISC assembly affecting a broad variety of FeS proteins. The differences in biochemical and clinical features between the two patients may relate to limited availability of cysteine in the newborn period and suggest a potential approach to therapy.}, language = {en} } @article{HectorHautierSaneretal.2010, author = {Hector, Andy and Hautier, Yann and Saner, Philippe and Wacker, Lukas and Bagchi, Robert and Joshi, Jasmin Radha and Scherer-Lorenzen, Michael and Spehn, Eva M. and Bazeley-White, Ellen and Weilenmann, Markus and Caldeira, Maria da Concei{\c{c}}{\~a}o Br{\´a}lio de Brito and Dimitrakopoulos, Panayiotis G. and Finn, John A. and Huss-Danell, Kerstin and Jumpponen, Ari and Mulder, Christa P. H. and Palmborg, Cecilia and Pereira, J. S. and Siamantziouras, Akis S. D. and Terry, Andrew C. and Troumbis, Andreas Y. and Schmid, Bernhard and Loreau, Michel}, title = {General stabilizing effects of plant diversity on grassland productivity through population asynchrony and overyielding}, issn = {0012-9658}, year = {2010}, abstract = {Insurance effects of biodiversity can stabilize the functioning of multispecies ecosystems against environmental variability when differential species' responses lead to asynchronous population dynamics. When responses are not perfectly positively correlated, declines in some populations are compensated by increases in others, smoothing variability in ecosystem productivity. This variance reduction effect of biodiversity is analogous to the risk- spreading benefits of diverse investment portfolios in financial markets. We use data from the BIODEPTH network of grassland biodiversity experiments to perform a general test for stabilizing effects of plant diversity on the temporal variability of individual species, functional groups, and aggregate communities. We tested three potential mechanisms: reduction of temporal variability through population asynchrony; enhancement of long-term average performance through positive selection effects; and increases in the temporal mean due to overyielding. Our results support a stabilizing effect of diversity on the temporal variability of grassland aboveground annual net primary production through two mechanisms. Two-species communities with greater population asynchrony were more stable in their average production over time due to compensatory fluctuations. Overyielding also stabilized productivity by increasing levels of average biomass production relative to temporal variability. However, there was no evidence for a performance-enhancing effect on the temporal mean through positive selection effects. In combination with previous work, our results suggest that stabilizing effects of diversity on community productivity through population asynchrony and overyielding appear to be general in grassland ecosystems.}, language = {en} } @article{GeversHoyeToppingetal.2011, author = {Gevers, Jana and Hoye, Toke Thomas and Topping, Chris John and Glemnitz, Michael and Schroeder, Boris}, title = {Biodiversity and the mitigation of climate change through bioenergy impacts of increased maize cultivation on farmland wildlife}, series = {Global change biology : Bioenergy}, volume = {3}, journal = {Global change biology : Bioenergy}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1757-1693}, doi = {10.1111/j.1757-1707.2011.01104.x}, pages = {472 -- 482}, year = {2011}, abstract = {The public promotion of renewable energies is expected to increase the number of biogas plants and stimulate energy crops cultivation (e. g. maize) in Germany. In order to assess the indirect effects of the resulting land-use changes on biodiversity, we developed six land-use scenarios and simulated the responses of six farmland wildlife species with the spatially explicit agent-based model system ALMaSS. The scenarios differed in composition and spatial configuration of arable crops. We implemented scenarios where maize for energy production replaced 15\% and 30\% of the area covered by other cash crops. Biogas maize farms were either randomly distributed or located within small or large aggregation clusters. The animal species investigated were skylark (Alauda arvensis), grey partridge (Perdix perdix), European brown hare (Lepus europaeus), field vole (Microtus agrestis), a linyphiid spider (Erigone atra) and a carabid beetle (Bembidion lampros). The changes in crop composition had a negative effect on the population sizes of skylark, partridge and hare and a positive effect on the population sizes of spider and beetle and no effect on the population size of vole. An aggregated cultivation of maize amplified these effects for skylark. Species responses to changes in the crop composition were consistent across three differently structured landscapes. Our work suggests that with the compliance to some recommendations, negative effects of biogas-related land-use change on the populations of the six representative farmland species can largely be avoided.}, language = {en} } @article{LoveFeuersteinWolffetal.2017, author = {Love, John A. and Feuerstein, Markus and Wolff, Christian Michael and Facchetti, Antonio and Neher, Dieter}, title = {Lead Halide Perovskites as Charge Generation Layers for Electron Mobility Measurement in Organic Semiconductors}, series = {ACS applied materials \& interfaces}, volume = {9}, journal = {ACS applied materials \& interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.7b10361}, pages = {42011 -- 42019}, year = {2017}, abstract = {Hybrid lead halide perovskites are introduced as charge generation layers (CGLs) for the accurate determination of electron mobilities in thin organic semiconductors. Such hybrid perovskites have become a widely studied photovoltaic material in their own right, for their high efficiencies, ease of processing from solution, strong absorption, and efficient photogeneration of charge. Time-of-flight (ToF) measurements on bilayer samples consisting of the perovskite CGL and an organic semiconductor layer of different thickness are shown to be determined by the carrier motion through the organic material, consistent with the much higher charge carrier mobility in the perovskite. Together with the efficient photon-to-electron conversion in the perovskite, this high mobility imbalance enables electron-only mobility measurement on relatively thin application-relevant organic films, which would not be possible with traditional ToF measurements. This architecture enables electron-selective mobility measurements in single components as well as bulk-heterojunction films as demonstrated in the prototypical polymer/fullerene blends. To further demonstrate the potential of this approach, electron mobilities were measured as a function of electric field and temperature in an only 127 nm thick layer of a prototypical electron-transporting perylene diimide-based polymer, and found to be consistent with an exponential trap distribution of ca. 60 meV. Our study furthermore highlights the importance of high mobility charge transporting layers when designing perovskite solar cells.}, language = {en} } @article{EichlerRabeSalzwedeletal.2017, author = {Eichler, Sarah and Rabe, Sophie and Salzwedel, Annett and M{\"u}ller, Steffen and Stoll, Josefine and Tilgner, Nina and John, Michael and Wegschneider, Karl and Mayer, Frank and V{\"o}ller, Heinz}, title = {Effectiveness of an interactive telerehabilitation system with home-based exercise training in patients after total hip or knee replacement}, series = {Trials}, volume = {18}, journal = {Trials}, publisher = {BioMed Central}, address = {London}, issn = {1745-6215}, doi = {10.1186/s13063-017-2173-3}, pages = {1 -- 7}, year = {2017}, abstract = {Background Total hip or knee replacement is one of the most frequently performed surgical procedures. Physical rehabilitation following total hip or knee replacement is an essential part of the therapy to improve functional outcomes and quality of life. After discharge from inpatient rehabilitation, a subsequent postoperative exercise therapy is needed to maintain functional mobility. Telerehabilitation may be a potential innovative treatment approach. We aim to investigate the superiority of an interactive telerehabilitation intervention for patients after total hip or knee replacement, in comparison to usual care, regarding physical performance, functional mobility, quality of life and pain. Methods/design This is an open, randomized controlled, multicenter superiority study with two prospective arms. One hundred and ten eligible and consenting participants with total knee or hip replacement will be recruited at admission to subsequent inpatient rehabilitation. After comprehensive, 3-week, inpatient rehabilitation, the intervention group performs a 3-month, interactive, home-based exercise training with a telerehabilitation system. For this purpose, the physiotherapist creates an individual training plan out of 38 different strength and balance exercises which were implemented in the system. Data about the quality and frequency of training are transmitted to the physiotherapist for further adjustment. Communication between patient and physiotherapist is possible with the system. The control group receives voluntary, usual aftercare programs. Baseline assessments are investigated after discharge from rehabilitation; final assessments 3 months later. The primary outcome is the difference in improvement between intervention and control group in 6-minute walk distance after 3 months. Secondary outcomes include differences in the Timed Up and Go Test, the Five-Times-Sit-to-Stand Test, the Stair Ascend Test, the Short-Form 36, the Western Ontario and McMaster Universities Osteoarthritis Index, the International Physical Activity Questionnaire, and postural control as well as gait and kinematic parameters of the lower limbs. Baseline-adjusted analysis of covariance models will be used to test for group differences in the primary and secondary endpoints. Discussion We expect the intervention group to benefit from the interactive, home-based exercise training in many respects represented by the study endpoints. If successful, this approach could be used to enhance the access to aftercare programs, especially in structurally weak areas.}, language = {en} } @misc{EichlerRabeSalzwedeletal.2017, author = {Eichler, Sarah and Rabe, Sophie and Salzwedel, Annett and M{\"u}ller, Steffen and Stoll, Josefine and Tilgner, Nina and John, Michael and Wegschneider, Karl and Mayer, Frank and V{\"o}ller, Heinz}, title = {Effectiveness of an interactive telerehabilitation system with home-based exercise training in patients after total hip or knee replacement}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-403702}, pages = {7}, year = {2017}, abstract = {Background Total hip or knee replacement is one of the most frequently performed surgical procedures. Physical rehabilitation following total hip or knee replacement is an essential part of the therapy to improve functional outcomes and quality of life. After discharge from inpatient rehabilitation, a subsequent postoperative exercise therapy is needed to maintain functional mobility. Telerehabilitation may be a potential innovative treatment approach. We aim to investigate the superiority of an interactive telerehabilitation intervention for patients after total hip or knee replacement, in comparison to usual care, regarding physical performance, functional mobility, quality of life and pain. Methods/design This is an open, randomized controlled, multicenter superiority study with two prospective arms. One hundred and ten eligible and consenting participants with total knee or hip replacement will be recruited at admission to subsequent inpatient rehabilitation. After comprehensive, 3-week, inpatient rehabilitation, the intervention group performs a 3-month, interactive, home-based exercise training with a telerehabilitation system. For this purpose, the physiotherapist creates an individual training plan out of 38 different strength and balance exercises which were implemented in the system. Data about the quality and frequency of training are transmitted to the physiotherapist for further adjustment. Communication between patient and physiotherapist is possible with the system. The control group receives voluntary, usual aftercare programs. Baseline assessments are investigated after discharge from rehabilitation; final assessments 3 months later. The primary outcome is the difference in improvement between intervention and control group in 6-minute walk distance after 3 months. Secondary outcomes include differences in the Timed Up and Go Test, the Five-Times-Sit-to-Stand Test, the Stair Ascend Test, the Short-Form 36, the Western Ontario and McMaster Universities Osteoarthritis Index, the International Physical Activity Questionnaire, and postural control as well as gait and kinematic parameters of the lower limbs. Baseline-adjusted analysis of covariance models will be used to test for group differences in the primary and secondary endpoints. Discussion We expect the intervention group to benefit from the interactive, home-based exercise training in many respects represented by the study endpoints. If successful, this approach could be used to enhance the access to aftercare programs, especially in structurally weak areas.}, language = {en} } @article{RanRolandLoveetal.2017, author = {Ran, Niva A. and Roland, Steffen and Love, John A. and Savikhin, Victoria and Takacs, Christopher J. and Fu, Yao-Tsung and Li, Hong and Coropceanu, Veaceslav and Liu, Xiaofeng and Bredas, Jean-Luc and Bazan, Guillermo C. and Toney, Michael F. and Neher, Dieter and Thuc-Quyen Nguyen,}, title = {Impact of interfacial molecular orientation on radiative recombination and charge generation efficiency}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-017-00107-4}, pages = {9}, year = {2017}, abstract = {A long standing question in organic electronics concerns the effects of molecular orientation at donor/acceptor heterojunctions. Given a well-controlled donor/acceptor bilayer system, we uncover the genuine effects of molecular orientation on charge generation and recombination. These effects are studied through the point of view of photovoltaics-however, the results have important implications on the operation of all optoelectronic devices with donor/ acceptor interfaces, such as light emitting diodes and photodetectors. Our findings can be summarized by two points. First, devices with donor molecules face-on to the acceptor interface have a higher charge transfer state energy and less non-radiative recombination, resulting in larger open-circuit voltages and higher radiative efficiencies. Second, devices with donor molecules edge-on to the acceptor interface are more efficient at charge generation, attributed to smaller electronic coupling between the charge transfer states and the ground state, and lower activation energy for charge generation.}, language = {en} } @article{DommainAndamaMcDonoughetal.2020, author = {Dommain, Ren{\´e} and Andama, Morgan and McDonough, Molly M. and Prado, Natalia A. and Goldhammer, Tobias and Potts, Richard and Maldonado, Jes{\´u}s E. and Nkurunungi, John Bosco and Campana, Michael G.}, title = {The Challenges of Reconstructing Tropical Biodiversity With Sedimentary Ancient DNA}, series = {Frontiers in Ecology and Evolution}, volume = {8}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2020.00218}, pages = {26}, year = {2020}, abstract = {Sedimentary ancient DNA has been proposed as a key methodology for reconstructing biodiversity over time. Yet, despite the concentration of Earth's biodiversity in the tropics, this method has rarely been applied in this region. Moreover, the taphonomy of sedimentary DNA, especially in tropical environments, is poorly understood. This study elucidates challenges and opportunities of sedimentary ancient DNA approaches for reconstructing tropical biodiversity. We present shotgun-sequenced metagenomic profiles and DNA degradation patterns from multiple sediment cores from Mubwindi Swamp, located in Bwindi Impenetrable Forest (Uganda), one of the most diverse forests in Africa. We describe the taxonomic composition of the sediments covering the past 2200 years and compare the sedimentary DNA data with a comprehensive set of environmental and sedimentological parameters to unravel the conditions of DNA degradation. Consistent with the preservation of authentic ancient DNA in tropical swamp sediments, DNA concentration and mean fragment length declined exponentially with age and depth, while terminal deamination increased with age. DNA preservation patterns cannot be explained by any environmental parameter alone, but age seems to be the primary driver of DNA degradation in the swamp. Besides degradation, the presence of living microbial communities in the sediment also affects DNA quantity. Critically, 92.3\% of our metagenomic data of a total 81.8 million unique, merged reads cannot be taxonomically identified due to the absence of genomic references in public databases. Of the remaining 7.7\%, most of the data (93.0\%) derive from Bacteria and Archaea, whereas only 0-5.8\% are from Metazoa and 0-6.9\% from Viridiplantae, in part due to unbalanced taxa representation in the reference data. The plant DNA record at ordinal level agrees well with local pollen data but resolves less diversity. Our animal DNA record reveals the presence of 41 native taxa (16 orders) including Afrotheria, Carnivora, and Ruminantia at Bwindi during the past 2200 years. Overall, we observe no decline in taxonomic richness with increasing age suggesting that several-thousand-year-old information on past biodiversity can be retrieved from tropical sediments. However, comprehensive genomic surveys of tropical biota need prioritization for sedimentary DNA to be a viable methodology for future tropical biodiversity studies.}, language = {en} } @article{WackerPiephoHarwoodetal.2016, author = {Wacker, Alexander and Piepho, Maike and Harwood, John L. and Guschina, Irina A. and Arts, Michael T.}, title = {Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species}, series = {Frontiers in plant science : FPLS}, volume = {7}, journal = {Frontiers in plant science : FPLS}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2016.00264}, pages = {1 -- 13}, year = {2016}, abstract = {We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans.}, language = {en} } @misc{WackerPiephoHarwoodetal.2016, author = {Wacker, Alexander and Piepho, Maike and Harwood, John L. and Guschina, Irina A. and Arts, Michael T.}, title = {Light-Induced Changes in Fatty Acid Profiles of Specific Lipid Classes in Several Freshwater Phytoplankton Species}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90682}, pages = {1 -- 13}, year = {2016}, abstract = {We tested the influence of two light intensities [40 and 300 μmol PAR / (m2s)] on the fatty acid composition of three distinct lipid classes in four freshwater phytoplankton species. We chose species of different taxonomic classes in order to detect potentially similar reaction characteristics that might also be present in natural phytoplankton communities. From samples of the bacillariophyte Asterionella formosa, the chrysophyte Chromulina sp., the cryptophyte Cryptomonas ovata and the zygnematophyte Cosmarium botrytis we first separated glycolipids (monogalactosyldiacylglycerol, digalactosyldiacylglycerol, and sulfoquinovosyldiacylglycerol), phospholipids (phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, and phosphatidylserine) as well as non-polar lipids (triacylglycerols), before analyzing the fatty acid composition of each lipid class. High variation in the fatty acid composition existed among different species. Individual fatty acid compositions differed in their reaction to changing light intensities in the four species. Although no generalizations could be made for species across taxonomic classes, individual species showed clear but small responses in their ecologically-relevant omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in terms of proportions and of per tissue carbon quotas. Knowledge on how lipids like fatty acids change with environmental or culture conditions is of great interest in ecological food web studies, aquaculture, and biotechnology, since algal lipids are the most important sources of omega-3 long-chain PUFA for aquatic and terrestrial consumers, including humans.}, language = {en} } @article{SpringerSignorePaijmansetal.2015, author = {Springer, Mark S. and Signore, Anthony V. and Paijmans, Johanna L. A. and Velez-Juarbe, Jorge and Domning, Daryl P. and Bauer, Cameron E. and He, Kai and Crerar, Lorelei and Campos, Paula F. and Murphy, William J. and Meredith, Robert W. and Gatesy, John and Willerslev, Eske and MacPhee, Ross D. E. and Hofreiter, Michael and Campbell, Kevin L.}, title = {Interordinal gene capture, the phylogenetic position of Steller's sea cow based on molecular and morphological data, and the macroevolutionary history of Sirenia}, series = {Molecular phylogenetics and evolution}, volume = {91}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2015.05.022}, pages = {178 -- 193}, year = {2015}, abstract = {The recently extinct (ca. 1768) Steller's sea cow (Hydrodamalis gigas) was a large, edentulous North Pacific sirenian. The phylogenetic affinities of this taxon to other members of this clade, living and extinct, are uncertain based on previous morphological and molecular studies. We employed hybridization capture methods and second generation sequencing technology to obtain >30 kb of exon sequences from 26 nuclear genes for both H. gigas and Dugong dugon. We also obtained complete coding sequences for the tooth-related enamelin (ENAM) gene. Hybridization probes designed using dugong and manatee sequences were both highly effective in retrieving sequences from H. gigas (mean = 98.8\% coverage), as were more divergent probes for regions of ENAM (99.0\% coverage) that were designed exclusively from a proboscidean (African elephant) and a hyracoid (Cape hyrax). New sequences were combined with available sequences for representatives of all other afrotherian orders. We also expanded a previously published morphological matrix for living and fossil Sirenia by adding both new taxa and nine new postcranial characters. Maximum likelihood and parsimony analyses of the molecular data provide robust support for an association of H. gigas and D. dugon to the exclusion of living trichechids (manatees). Parsimony analyses of the morphological data also support the inclusion of H. gigas in Dugongidae with D. dugon and fossil dugongids. Timetree analyses based on calibration density approaches with hard- and soft-bounded constraints suggest that H. gigas and D. dugon diverged in the Oligocene and that crown sirenians last shared a common ancestor in the Eocene. The coding sequence for the ENAM gene in H. gigas does not contain frameshift mutations or stop codons, but there is a transversion mutation (AG to CG) in the acceptor splice site of intron 2. This disruption in the edentulous Steller's sea cow is consistent with previous studies that have documented inactivating mutations in tooth-specific loci of a variety of edentulous and enamelless vertebrates including birds, turtles, aardvarks, pangolins, xenarthrans, and baleen whales. Further, branch-site dN/dS analyses provide evidence for positive selection in ENAM on the stem dugongid branch where extensive tooth reduction occurred, followed by neutral evolution on the Hydrodamalis branch. Finally, we present a synthetic evolutionary tree for living and fossil sirenians showing several key innovations in the history of this clade including character state changes that parallel those that occurred in the evolutionary history of cetaceans. (C) 2015 Elsevier Inc. All rights reserved.}, language = {en} } @article{McVeyKimTabuchietal.2017, author = {McVey, Mark J. and Kim, Michael and Tabuchi, Arata and Srbely, Victoria and Japtok, Lukasz and Arenz, Christoph and Rotstein, Ori and Kleuser, Burkhard and Semple, John W. and Kuebler, Wolfgang M.}, title = {Acid sphingomyelinase mediates murine acute lung injury following transfusion of aged platelets}, series = {American journal of physiology : Lung cellular and molecular physiology}, volume = {312}, journal = {American journal of physiology : Lung cellular and molecular physiology}, number = {5}, publisher = {American Physiological Society}, address = {Bethesda}, issn = {1040-0605}, doi = {10.1152/ajplung.00317.2016}, pages = {625 -- 637}, year = {2017}, abstract = {Pulmonary complications from stored blood products are the leading cause of mortality related to transfusion. Transfusion-related acute lung injury is mediated by antibodies or bioactive mediators, yet underlying mechanisms are incompletely understood. Sphingolipids such as ceramide regulate lung injury, and their composition changes as a function of time in stored blood. Here, we tested the hypothesis that aged platelets may induce lung injury via a sphingolipid-mediated mechanism. To assess this hypothesis, a two-hit mouse model was devised. Recipient mice were treated with 2 mg/kg intraperitoneal lipopolysaccharide (priming) 2 h before transfusion of 10 ml/kg stored (1-5 days) platelets treated with or without addition of acid sphingomyelinase inhibitor ARC39 or platelets from acid sphingomyelinase-deficient mice, which both reduce ceramide formation. Transfused mice were examined for signs of pulmonary neutrophil accumulation, endothelial barrier dysfunction, and histological evidence of lung injury. Sphingolipid profiles in stored platelets were analyzed by mass spectrophotometry. Transfusion of aged platelets into primed mice induced characteristic features of lung injury, which increased in severity as a function of storage time. Ceramide accumulated in platelets during storage, but this was attenuated by ARC39 or in acid sphingomyelinase-deficient platelets. Compared with wild-type platelets, transfusion of ARC39-treated or acid sphingomyelinase-deficient aged platelets alleviated lung injury. Aged platelets elicit lung injury in primed recipient mice, which can be alleviated by pharmacological inhibition or genetic deletion of acid sphingomyelinase. Interventions targeting sphingolipid formation represent a promising strategy to increase the safety and longevity of stored blood products.}, language = {en} } @article{SicardKappelLeeetal.2016, author = {Sicard, Adrien and Kappel, Christian and Lee, Young Wha and Wozniak, Natalia Joanna and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Standing genetic variation in a tissue-specific enhancer underlies selfing-syndrome evolution in Capsella}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {113}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1613394113}, pages = {13911 -- 13916}, year = {2016}, abstract = {Mating system shifts recurrently drive specific changes in organ dimensions. The shift in mating system from out-breeding to selfing is one of the most frequent evolutionary transitions in flowering plants and is often associated with an organ-specific reduction in flower size. However, the evolutionary paths along which polygenic traits, such as size, evolve are poorly understood. In particular, it is unclear how natural selection can specifically modulate the size of one organ despite the pleiotropic action of most known growth regulators. Here, we demonstrate that allelic variation in the intron of a general growth regulator contributed to the specific reduction of petal size after the transition to selfing in the genus Capsella. Variation within this intron affects an organ-specific enhancer that regulates the level of STERILE APETALA (SAP) protein in the developing petals. The resulting decrease in SAP activity leads to a shortening of the cell proliferation period and reduced number of petal cells. The absence of private polymorphisms at the causal region in the selfing species suggests that the small-petal allele was captured from standing genetic variation in the ancestral out-crossing population. Petal-size variation in the current out-crossing population indicates that several small-effect mutations have contributed to reduce petal-size. These data demonstrate how tissue-specific regulatory elements in pleiotropic genes contribute to organ-specific evolution. In addition, they provide a plausible evolutionary explanation for the rapid evolution of flower size after the out-breeding-to-selfing transition based on additive effects of segregating alleles.}, language = {en} } @article{BlahaPikovskijRosenblumetal.2011, author = {Blaha, Karen A. and Pikovskij, Arkadij and Rosenblum, Michael and Clark, Matthew T. and Rusin, Craig G. and Hudson, John L.}, title = {Reconstruction of two-dimensional phase dynamics from experiments on coupled oscillators}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {84}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1539-3755}, doi = {10.1103/PhysRevE.84.046201}, pages = {7}, year = {2011}, abstract = {Phase models are a powerful method to quantify the coupled dynamics of nonlinear oscillators from measured data. We use two phase modeling methods to quantify the dynamics of pairs of coupled electrochemical oscillators, based on the phases of the two oscillators independently and the phase difference, respectively. We discuss the benefits of the two-dimensional approach relative to the one-dimensional approach using phase difference. We quantify the dependence of the coupling functions on the coupling magnitude and coupling time delay. We show differences in synchronization predictions of the two models using a toy model. We show that the two-dimensional approach reveals behavior not detected by the one-dimensional model in a driven experimental oscillator. This approach is broadly applicable to quantify interactions between nonlinear oscillators, especially where intrinsic oscillator sensitivity and coupling evolve with time.}, language = {en} } @article{ToySutherlandTownendetal.2017, author = {Toy, Virginia Gail and Sutherland, Rupert and Townend, John and Allen, Michael J. and Becroft, Leeza and Boles, Austin and Boulton, Carolyn and Carpenter, Brett and Cooper, Alan and Cox, Simon C. and Daube, Christopher and Faulkner, D. R. and Halfpenny, Angela and Kato, Naoki and Keys, Stephen and Kirilova, Martina and Kometani, Yusuke and Little, Timothy and Mariani, Elisabetta and Melosh, Benjamin and Menzies, Catriona D. and Morales, Luiz and Morgan, Chance and Mori, Hiroshi and Niemeijer, Andre and Norris, Richard and Prior, David and Sauer, Katrina and Schleicher, Anja Maria and Shigematsu, Norio and Teagle, Damon A. H. and Tobin, Harold and Valdez, Robert and Williams, Jack and Yeo, Samantha and Baratin, Laura-May and Barth, Nicolas and Benson, Adrian and Boese, Carolin and C{\´e}l{\´e}rier, Bernard and Chamberlain, Calum J. and Conze, Ronald and Coussens, Jamie and Craw, Lisa and Doan, Mai-Linh and Eccles, Jennifer and Grieve, Jason and Grochowski, Julia and Gulley, Anton and Howarth, Jamie and Jacobs, Katrina and Janku-Capova, Lucie and Jeppson, Tamara and Langridge, Robert and Mallyon, Deirdre and Marx, Ray and Massiot, C{\´e}cile and Mathewson, Loren and Moore, Josephine and Nishikawa, Osamu and Pooley, Brent and Pyne, Alex and Savage, Martha K. and Schmitt, Doug and Taylor-Offord, Sam and Upton, Phaedra and Weaver, Konrad C. and Wiersberg, Thomas and Zimmer, Martin}, title = {Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand}, series = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, volume = {60}, journal = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, number = {4}, publisher = {Taylor \& Francis}, address = {Abingdon}, organization = {DFDP-2 Sci Team}, issn = {0028-8306}, doi = {10.1080/00288306.2017.1375533}, pages = {497 -- 518}, year = {2017}, abstract = {During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5-893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200-400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.}, language = {en} } @article{SicardThammMaronaetal.2014, author = {Sicard, Adrien and Thamm, Anna and Marona, Cindy and Lee, Young Wha and Wahl, Vanessa and Stinchcombe, John R. and Wright, Stephen I. and Kappel, Christian and Lenhard, Michael}, title = {Repeated evolutionary changes of leaf morphology caused by mutations to a homeobox gene}, series = {Current biology}, volume = {24}, journal = {Current biology}, number = {16}, publisher = {Cell Press}, address = {Cambridge}, issn = {0960-9822}, doi = {10.1016/j.cub.2014.06.061}, pages = {1880 -- 1886}, year = {2014}, abstract = {Elucidating the genetic basis of morphological changes in evolution remains a major challenge in biology [1-3]. Repeated independent trait changes are of particular interest because they can indicate adaptation in different lineages or genetic and developmental constraints on generating morphological variation [4-6]. In animals, changes to "hot spot" genes with minimal pleiotropy and large phenotypic effects underlie many cases of repeated morphological transitions [4-8]. By contrast, only few such genes have been identified from plants [8-11], limiting cross-kingdom comparisons of the principles of morphological evolution. Here, we demonstrate that the REDUCED COMPLEXITY (RCO) locus [12] underlies more than one naturally evolved change in leaf shape in the Brassicaceae. We show that the difference in leaf margin dissection between the sister species Capsella rubella and Capsella grandiflora is caused by cis-regulatory variation in the homeobox gene RCO-A, which alters its activity in the developing lobes of the leaf. Population genetic analyses in the ancestral C. grandiflora indicate that the more-active C. rubella haplotype is derived from a now rare or lost C. grandiflora haplotype via additional mutations. In Arabidopsis thaliana, the deletion of the RCO-A and RCO-B genes has contributed to its evolutionarily derived smooth leaf margin [12], suggesting the RCO locus as a candidate for an evolutionary hot spot. We also find that temperature-responsive expression of RCO-A can explain the phenotypic plasticity of leaf shape to ambient temperature in Capsella, suggesting a molecular basis for the well-known negative correlation between temperature and leaf margin dissection.}, language = {en} } @article{SicardKappelJosephsetal.2015, author = {Sicard, Adrien and Kappel, Christian and Josephs, Emily B. and Lee, Young Wha and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms8960}, pages = {10}, year = {2015}, abstract = {In the Bateson-Dobzhansky-Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles.}, language = {en} } @misc{SicardKappelJosephsetal.2015, author = {Sicard, Adrien and Kappel, Christian and Josephs, Emily B. and Wha Lee, Young and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-93568}, year = {2015}, abstract = {In the Bateson-Dobzhansky-Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles.}, language = {en} } @article{SicardKappelJosephsetal.2015, author = {Sicard, Adrien and Kappel, Christian and Josephs, Emily B. and Wha Lee, Young and Marona, Cindy and Stinchcombe, John R. and Wright, Stephen I. and Lenhard, Michael}, title = {Divergent sorting of a balanced ancestral polymorphism underlies the establishment of gene-flow barriers in Capsella}, series = {Nature Communications}, volume = {6}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms8960}, year = {2015}, abstract = {In the Bateson-Dobzhansky-Muller model of genetic incompatibilities post-zygotic gene-flow barriers arise by fixation of novel alleles at interacting loci in separated populations. Many such incompatibilities are polymorphic in plants, implying an important role for genetic drift or balancing selection in their origin and evolution. Here we show that NPR1 and RPP5 loci cause a genetic incompatibility between the incipient species Capsella grandiflora and C. rubella, and the more distantly related C. rubella and C. orientalis. The incompatible RPP5 allele results from a mutation in C. rubella, while the incompatible NPR1 allele is frequent in the ancestral C. grandiflora. Compatible and incompatible NPR1 haplotypes are maintained by balancing selection in C. grandiflora, and were divergently sorted into the derived C. rubella and C. orientalis. Thus, by maintaining differentiated alleles at high frequencies, balancing selection on ancestral polymorphisms can facilitate establishing gene-flow barriers between derived populations through lineage sorting of the alternative alleles.}, language = {en} } @phdthesis{John2003, author = {John, C{\´e}dric Micha{\"e}l}, title = {Miocene climate as recorded on slope carbonates : examples from Malta (Central Mediterranean) and Northeastern Australia (Marion Plateau, ODP LEG 194)}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0000820}, school = {Universit{\"a}t Potsdam}, year = {2003}, abstract = {Im Rahmen dieser Doktorarbeit wurden die Hangkarbonate von zwei mioz{\"a}nen heterozoischen Karbonatsystemen n{\"a}her untersucht: die Malta Inselgruppe (zentrales Mittelmeer) und das Marion Plateau (Nordost Australien, ODP Leg 194). Die Auswirkungen der mittelmioz{\"a}nen Abk{\"u}hlung (Mi3), die auf 13.6 Ma datiert wird und starken Einfluß auf die Sauerstoffisotopenkurve hatte, in den oben genannten Flachwassersystemen stellten das Ziel dieser Arbeit dar. Dieses Abk{\"u}hlungsereignis beeinflußte außerdem sehr stark die ozeanographischen und klimatischen Muster, die im weiteren Verlauf zum modernen Eishausklima f{\"u}hrten. So steht insbesondere die Vereisung von Ostantarktika mit diesem Ereignis in Verbindung. Diese Arbeit untersucht den Einfluß dieses Ereignisses auf Flachwassersysteme, um vorliegende Untersuchungen in Tiefwassersystemen zu erg{\"a}nzen und so zum globalen Verst{\"a}ndnis des mioz{\"a}nen Klimawechsels beizutragen. Die Profile auf der Maltainselgruppe wurden mit Hilfe von Kohlenstoff- und Sauerstoffisotopen Auswertungen im Gesamtgestein, Gesamtgesteinmineralogie, Tonmineralanalyse und organischer Geochemie untersucht. Durch einen Wechsel von karbonatischeren zu tonigeren Sedimenten beeinflußte das mittelmioz{\"a}ne Abk{\"u}hlungsereignis die Sedimentation in diesem Gebiet sehr stark. Weiterhin wurde beobachtet, daß jede Phase der antarktischen Vereisung, nicht nur das mittelmioz{\"a}ne Hauptereignis, zu einem erh{\"o}hten terrigenen Eintrag in den Hangsedimenten der Maltainselgruppe f{\"u}hrte. Akkumulationsraten zeigen, daß dieser erh{\"o}hte terrigene Eintrag den einzelnen Vereisungsperioden zusammenh{\"a}ngt und die karbonatischen Sedimente durch tonreiche Sedimente \“verunreinigt\” wurden. Das daraufhin entwickelte Modell erkl{\"a}rt diesen erh{\"o}hten terrigenen Eintrag mit einer nordw{\"a}rtigen Verlagerung der innertropischen Konvergenzzone durch die Bildung von kalten, dichten Luftmassen, die zu verst{\"a}rkten Niederschl{\"a}gen in Nordafrika f{\"u}hrten. Diese verst{\"a}rkten Niederschl{\"a}ge (oder verst{\"a}rkter afrikanischer Monsun) beeinflußten die kontinentale Verwitterung und den Eintrag, mit der Folge, daß verst{\"a}rkt terrigene Sedimente im Bereich der Hangsedimente der Maltainselgruppe abgelagert wurden. Die tonreichen Intervalle weisen {\"A}hnlichkeiten zu sapropelischen Ablagerungen auf, was mit Hilfe der Spektral analyse des Karbonatgehalts und der geochemischen Analyse des organischen Materials gezeigt wurde. Auf dem Marion Plateau wurden die Sauerstoff- und Kohlenstoffisotopenkurven anhand von Foraminiferen der Gattung Cibicidoides spp. rekonstruiert. Der Karbonatgehalt wurde mit Hilfe einer chemischen Methode (Coulometer) ermittelt. Genauso wie die Sedimente der Maltainselgruppe beeinflußte das mittelmioz{\"a}ne Abk{\"u}hlungsereignis (Mi3) auch die Sedimente auf dem Marion Plateau. So kam es bei 13,8 Ma, in etwa zur Zeit der Vereisung von Ostantarktika, zu einem Abfall der Karbonatakkumulationsraten. Weiterhin traten {\"A}nderungen in der Zusammensetzung der Sedimente auf, so nehmen neritische Karbonatfragmente ab, der planktische Foraminiferengehalt nimmt zu und es wurden verst{\"a}rkt Quarz und Glaukonit abgelagert. Ein {\"u}berraschendes Ergebnis ist die Tatsache, daß der große N12-N14 Meeresspiegelabfall um 11,5 Ma die Akkumulationsraten der Karbonate auf dem Hang nicht beeinflußte. Dieses Ergebnis ist umso erstaunlicher, da Karbonatplattformen normalerweise sehr sensitiv auf Meeresspiegel{\"a}nderungen reagieren. Der Grund, warum sich die Karbonatakkumulationsraten schon um 13,6 Ma (Mi3) und nicht erst um 11,5 Ma (N12-N14) verringerten, liegt in der Tatsache, daß die ozeanischen Str{\"o}mungen die Karbonatsedimentation auf dem Hang des Marion Plateau schon im Mioz{\"a}n kontrollierten. Das mittelmioz{\"a}ne Ereignis (Mi3) erh{\"o}hte die St{\"a}rke diese Str{\"o}mungen und als eine Ursache wurde die Karbonatakkumulation auf den H{\"a}ngen reduziert. Die Amplitude des N12-N14 Meeresspiegelabfalls liegt bei 90 m unter der Ber{\"u}cksichtigung der Sauerstoffisotopendaten aus der Tiefsee und Berechnungen des Meeresspiegels anhand des \“coastal onlaps\”, die w{\"a}hrend Leg 194 gemacht wurden. Die Isotopendaten dieser Arbeit weisen hingegen auf einen verringerten Meeresspiegelabfall von 70 m hin. Als allgemeine Schlußfolgerung kann gesagt werden, daß der mittelmioz{\"a}ne Klimaumschwung die Karbonatsysteme zumindest an den beiden untersuchten Lokalit{\"a}ten beeinflußt hat. Allerdings waren die Auswirkungen sehr von den unterschiedlichen lokalen Gegebenheiten abh{\"a}ngig. Insbesondere wirkten sich die Anwesenheit einer Landmasse (Malta) und die Abwesenheit einer Barriere vor den Einfl{\"u}ssen des offenen Ozeans (Marion Plateau) stark auf die Ablagerung der Karbonate aus.}, language = {en} } @article{JohnAdatteMutti2006, author = {John, Cedric Michael and Adatte, Thierry and Mutti, Maria}, title = {Regional trends in clay mineral fluxes to the Queensland margin and ties to middle Miocene global cooling}, issn = {0031-0182}, doi = {10.1016/j.palaeo.2005.09.010}, year = {2006}, abstract = {Three ODP sites located on the Marion Plateau, Northeast Australian margin, were investigated for clay mineral and bulk mineralogy changes through the early to middle Miocene. Kaolinite to smectite (K/S) ratios, as well as mass accumulation rates of clays, point to a marked decrease in accumulation of smectite associated with an increase in accumulation of kaolinite starting at similar to 15.6 Ma, followed by a, second increase in accumulation of kaolinite at similar to 13.2 Ma. Both of these increases are correlative to an increase in the calcite to detritus ratio. Comparison of our record with published precipitation proxies from continental Queensland indicates that increases in kaolinite did not correspond to more intense tropical-humid conditions, but instead to periods of greater aridity. Three mechanisms are explored to explain the temporal trends in clad, on the Marion Plateau: sea-level changes, changes in oceanic currents, and denudation of the Australian continent followed by reworking and eolian transport of clays. Though low mass accumulation rates of kaolinite are compatible with a possible contribution of eolian material after 14 Ma, when Australia became more arid, the lateral distribution of kaolinite along slope indicates mainly fluvial input for all clays and thus rules out this mechanism as well as oceanic current transport as the main controls behind clay accumulation on the plateau. We propose a model explaining the good correlation between long-term sea-level fall, decrease in smectite accumulation, increase in kaolinite accumulation and increase in carbonate input to the distal slope locations. We hypothesize that during low sea level and thus periods of drier continental climate in Queensland, early Miocene kaolinite-rich lacustrine deposits were being reworked, and that the progradation of the heterozoan carbonate platforms towards the basin center favored input of carbonate to the distal slope sites. The major find of our study is that increase kaolinite fluxes on the Queensland margin during the early and middle Miocene did not reflect the establishment of a tropical climate, and this stresses that care must be taken when reconstructing Australian climate based on deep-sea clay records alone.}, language = {en} } @article{JohnKarnerMutti2004, author = {John, Cedric Michael and Karner, G. D. and Mutti, Maria}, title = {delta O-18 and Marion Plateau backstripping : Combining two approaches to constrain late middle Miocene eustatic amplitude}, issn = {0091-7613}, year = {2004}, abstract = {delta(18)O(benthic), values from Leg 194 Ocean Drilling Program Sites 1192 and 1195, (drilled on the Marion Plateau) were combined with deep-sea values to reconstruct the magnitude range of the late middle Miocene sea-level fall (13.6-11.4 Ma). In parallel, an estimate for the late middle Miocene sea-level fall was calculated from the stratigraphic relationship identified during Leg 194 and the structural relief of carbonate platforms that form the Marion Plateau. Corrections for thermal subsidence induced by Late Cretaceous rifting, flexural sediment loading, and sediment compaction were taken into account. The response of the lithosphere to sediment loading was considered for a range of effective elastic thicknesses (10 < T-e < 40 km). By overlapping the sea-level range of both the deep-sea isotopes and the results from the backstripping analysis, we demonstrate that the amplitude of the late middle Miocene sea-level fall was 45-68 m (56.5 +/- 11.5 m). Including an estimate for sea-level variation using the delta(18)O(benthic) results from the subtropical Marion Plateau, the range of sea-level fall is tightly constrained between 45 and 55 in (50.0 +/- 5.0 m). This result is the first precise quantitative estimate for the amplitude of the late middle Miocene eustatic fall that sidesteps the errors inherent in using benthic foraminifera assemblages to predict paleo-water depth. The estimate also includes an error analysis for the flexural response of the lithosphere to both water and sediment loads. Our result implies that the extent of ice buildup in the Miocene was larger than previously estimated, and conversely that the amount of cooling associated with this event was less important}, language = {en} } @article{JohnMutti2005, author = {John, Cedric Michael and Mutti, Maria}, title = {Relative control of paleoceanography, climate, and eustasy over heterozoan carbonates : a perspective from slope sediments of the Marion Plateau (ODP LEG 194)}, issn = {1527-1404}, year = {2005}, abstract = {In this paper we explore the relative control of paleoceanography, eustasy, and water temperature over the evolution of a carbonate slope system deposited on the Marion Plateau (Northeastern Australia). Growth of several carbonate platforms started in the early Miocene on this plateau, and although they occurred in low-latitude subtropical waters they are composed mainly of heterozoan organisms. We investigated an upper to distal slope transect drilled during ODP Leg 194 and located close to the Northern Marion Platform. We reconstructed mass accumulation rates of carbonate as well as the evolution in the ratios of carbon and oxygen stable isotopes. Power spectrum analysis of the carbon isotope record revealed the existence of cycles with main frequencies centered around 409 Kyr and 1800 Kyr. We interpret the 409 Kyr cycle as being paced by changes in the eccentricity of the Earth orbit, and we suggest that the 1800 Kyr cycle could be linked to long-term eustatic changes. Finally, on the basis of the timing of changes in mass accumulation rates of carbonate we infer that the strength and direction of oceanic currents affected sedimentation on the Marion Plateau by shifting depocenters of slope sedimentation, a process probably further modulated by sea-level changes. We argue that the evolution and demise of the heterozoan carbonate systems present on the Marion Plateau were controlled mainly by the evolution of strong benthic currents, and that eustasy and water temperature alone did not account for the drowning of the platforms in the mid Miocene}, language = {en} } @article{LepetitViereckPiperetal.2014, author = {Lepetit, Petra and Viereck, Lothar and Piper, John D. A. and Sudo, Masafumi and Gurel, Ali and Copuroglu, Ibrahim and Gruber, Manuela and Mayer, Bernhard and Koch, Michael and Tatar, Orhan and Gursoy, Halil}, title = {Ar-40/Ar-39 dating of ignimbrites and plinian air-fall layers from Cappadocia, Central Turkey: Implications to chronostratigraphic and Eastern Mediterranean palaeoenvironmental record}, series = {Chemie der Erde : interdisciplinary journal for chemical problems of the geo-sciences and geo-ecology}, volume = {74}, journal = {Chemie der Erde : interdisciplinary journal for chemical problems of the geo-sciences and geo-ecology}, number = {3}, publisher = {Elsevier}, address = {Jena}, issn = {0009-2819}, doi = {10.1016/j.chemer.2014.05.001}, pages = {471 -- 488}, year = {2014}, abstract = {Magmatism forming the Central Anatolian Volcanic Province of Cappadocia, central Turkey, records the last phase of Neotethyan subduction after similar to 11 Ma. Thirteen large calc-alkaline ignimbrite sheets form marker bands within the volcano-sedimentary succession (the Urgup Formation) and provide a robust chronostratigraphy for paleoecologic evaluation of the interleaved paleosols. This paper evaluates the chronologic record in the context of the radiometric, magnetostratigraphic and lithostratigraphic controls. Previous inconsistencies relating primarily to K/Ar evidence were reason for the initiation of an integrated study which includes Ar-40/Ar-39 dating, palaeomagnetic and stratigraphic evidence. The newly determined Ar-40/Ar-39-ages (Lepetit, 2010) are in agreement with Ar/Ar and U/Pb data meanwhile published by Pauquette and Le Pennec (2012) and Aydar et al. (2012). The Ar-40/Ar-39-ages restrict the end of the Urgup Formation to the late Miocene. The paleosol sequence enclosed by the ignimbrites is thus restricted to the late Miocene, the most intense formation of pedogene calcretes correlating with the Messinian Salinity Crisis.}, language = {en} } @article{RosenhahnFinlayPettitetal.2009, author = {Rosenhahn, Axel and Finlay, John A. and Pettit, Michala E. and Ward, Andy and Wirges, Werner and Gerhard, Reimund and Callow, Maureen E. and Grunze, Michael and Callow, James A.}, title = {Zeta potential of motile spores of the green alga Ulva linza and the influence of electrostatic interactions on spore settlement and adhesion strength}, issn = {1559-4106}, doi = {10.1116/1.3110182}, year = {2009}, abstract = {The zeta potential of the motile spores of the green alga (seaweed) Ulva linza was quantified by video microscopy in combination with optical tweezers and determined to be -19.3{\~n}1.1 mV. The electrostatic component involved in the settlement and adhesion of spores was studied using electret surfaces consisting of PTFE and bearing different net charges. As the surface chemistry remains the same for differently charged surfaces, the experimental results isolate the influence of surface charge and thus electrostatic interactions. Ulva spores were demonstrated to have a reduced tendency to settle on negatively charged surfaces and when they did settle the adhesion strength of settled spores was lower than with neutral or positively charged surfaces. These observations can be ascribed to electrostatic interactions.}, language = {en} } @book{WeissMuerbeZichyetal.2018, author = {Weiß, Norman and M{\"u}rbe, Ulrike and Zichy, Michael and Jeutner, Valentin and Heinrichs, Bert and Risse, Verena and Brunozzi, Philippe and Gerson, Oliver Harry and Martinsen, Franziska and Link, Jochen and Pollmann, Arnd and Wildfeuer, Dennis and Lauk{\"o}tter, Sebastian and John, Emanuel and Baranzke, Heike and Schoellner, Karsten and Sch{\"u}es, Christina and Koppe, David}, title = {Philosophie der Menschenrechte in Theorie und Praxis}, series = {Studien zu Grund- und Menschenrechten}, journal = {Studien zu Grund- und Menschenrechten}, editor = {M{\"u}rbe, Ulrike and Weiß, Norman}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-419-7}, issn = {1435-9154}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402732}, publisher = {Universit{\"a}t Potsdam}, pages = {307}, year = {2018}, abstract = {In welcher Beziehung steht die praktische Philosophie zur Wirklichkeit der Menschenrechtsfragen in Recht und Politik? Wie kann und soll sie sich ihrem komplexen Gegenstand n{\"a}hern? Inwieweit kommt ihr die Aufgabe zu, politisches Geschehen konkret zu kommentieren und Vorschl{\"a}ge f{\"u}r die Implementierung menschenrechtstheoretischer Annahmen zu machen? Wie l{\"a}sst sie sich als anwendungsorientierte Disziplin denken, die jenseits reiner Begr{\"u}ndungsdiskurse einen Beitrag zur globalen St{\"a}rkung der Menschenrechtsidee leistet? Der vorliegende Sammelband geht diesen und verwandten Fragen in acht Beitr{\"a}gen mit jeweils einem Kommentar nach und regt damit zum Nachdenken {\"u}ber das Selbstverst{\"a}ndnis zeitgen{\"o}ssischer Menschenrechtsphilosophie an.}, language = {de} } @misc{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {19}, doi = {10.25932/publishup-56537}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565379}, pages = {14}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {99}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {4}, publisher = {Elsevier}, address = {New York}, organization = {Lifelines Cohort Study
Regeneron Genetics Ctr}, issn = {0085-2538}, doi = {10.1016/j.kint.2020.09.030}, pages = {926 -- 939}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @inproceedings{EsveldVriesBecchettietal.2023, author = {Esveld, Selma van and Vries, Nardo de and Becchetti, Sibilla and Dopper, Sofia and Valkenburg, Willem van and Carlon, May Kristine Jonson and Yokoi, Kensuke and Gayed, John Maurice and Suyama, Hiroshi and Cross, Jeffrey Scott and Jin, Tonje and Xue, Wei and Bruillard, {\´E}ric and Steinbeck, Hendrik and Meinel, Christoph and {\"O}zdemir, Paker Doğu and Can Bayer, Burak and Mercan, Duygu and Buyurucu, Gamze and Haugsbakken, Halvdan and Hagelia, Marianne and Ebner, Martin and Edelsbrunner, Sarah and Hohla-Sejkora, Katharina and Lipp, Silvia and Sch{\"o}n, Sandra and Xiaoxiao, Wang and Shuangshuang, Guo and Morales-Chan, Miguel and Amado-Salvatierra, H{\´e}ctor R. and Hern{\´a}ndez-Rizzardini, Rocael and Egloffstein, Marc and H{\"u}nemohr, Holger and Ifenthaler, Dirk and Dixon, Fred and Trabucchi, Stefania and Khaneboubi, Mehdi and Giannatelli, Ada and Tomasini, Alessandra and Staubitz, Thomas and Serth, Sebastian and Thomas, Max and Koschutnig-Ebner, Markus and Rampelt, Florian and Stetten, Alexander von and Wittke, Andreas and Theeraroungchaisri, Anuchai and Thammetar, Thapanee and Duangchinda, Vorasuang and Khlaisang, Jintavee and Mair, Bettina and Steinkellner, Iris and Stojcevic, Ivana and Zwiauer, Charlotte and Thirouard, Maria and Vill{\`e}sbrunne, Marie de la and Bernaert, Oliver and Nohr, Magnus and Alario Hoyos, Carlos and Delgado Kloos, Carlos and Kiendl, Doris and Terzieva, Liliya and Concia, Francesca and Distler, Petr and Law, Gareth and Macerata, Elena and Mariani, Mario and Mossini, Eros and Negrin, Maddalena and Štrok, Marko and Neub{\"o}ck, Kristina and Linschinger, Nadine and Lorenz, Anja and Bock, Stefanie and Schulte-Ostermann, Juleka and Moura Santos, Ana and Corti, Paola and Costa, Luis Felipe Coimbra and Utunen, Heini and Attias, Melissa and Tokar, Anna and Kennedy, Eileen and Laurillard, Diana and Zeitoun, Samar and Wasilewski, Julie and Shlaka, Souhad and Ouahib, Sara and Berrada, Khalid and Dietz, Michael and Roth, Dennis}, title = {EMOOCs 2023}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Cross, Jeffrey and Jonson Carlon, May Kristine and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, doi = {10.25932/publishup-57645}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576450}, year = {2023}, abstract = {From June 14 to June 16, 2023, Hasso Plattner Institute, Potsdam, hosted the eighth European MOOC Stakeholder Summit (EMOOCs 2023). The pandemic is fortunately over. It has once again shown how important digital education is. How well-prepared a country was could be seen in our schools, universities, and companies. In different countries, the problems manifested themselves differently. The measures and approaches to solving the problems varied accordingly. Digital education, whether micro-credentials, MOOCs, blended learning formats, or other e-learning tools, received a major boost. EMOOCs 2023 focusses on the effects of this emergency situation. How has it affected the development and delivery of MOOCs and other e-learning offerings all over Europe? Which projects can serve as models for successful digital learning and teaching? Which roles can MOOCs and micro-credentials bear in the current business transformation? Is there a backlash to the routine we knew from pre-Corona times? Or have many things become firmly established in the meantime, e.g. remote work, hybrid conferences, etc.? Furthermore, EMOOCs 2023 has a closer look at the development and formalization of digital learning. Micro-credentials are just the starting point. Further steps in this direction would be complete online study programs or full online universities. Another main topic is the networking of learning offers and the standardization of formats and metadata. Examples of fruitful cooperations are the MOOChub, the European MOOC Consortium, and the Common Micro-Credential Framework. The learnings, derived from practical experience and research, are explored in EMOOCs 2023 in four tracks and additional workshops, covering various aspects of this field. In this publication, we present papers from the conference's Research \& Experience Track, the Business Track and the International Track.}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2016, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Backes, Michael and Balzer, Arnim and Becherini, Yvonne and Tjus, J. Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Birsin, E. and Blackwell, R. and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Carr, John and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chen, Andrew and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Djannati-Ata, A. and Domainko, W. and Donath, A. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J-P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M-H. and Grudzinska, M. and Hadasch, D. and Haeffner, S. and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, A. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kerszberg, D. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P. and Lohse, T. and Lopatin, A. and Lu, C-C. and Lui, R. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, M. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P-O. and Peyaud, B. and Pita, S. and Poon, H. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, D. and Sanchez, David M. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J-P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Tuffs, R. and Valerius, K. and van der Walt, J. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Zywucka, N.}, title = {Acceleration of petaelectronvolt protons in the Galactic Centre}, series = {Nature : the international weekly journal of science}, volume = {531}, journal = {Nature : the international weekly journal of science}, publisher = {Nature Publ. Group}, address = {London}, organization = {HESS Collaboration}, issn = {0028-0836}, doi = {10.1038/nature17147}, pages = {476 -- +}, year = {2016}, abstract = {Galactic cosmic rays reach energies of at least a few petaelectronvolts (of the order of 1015 electronvolts). This implies that our Galaxy contains petaelectronvolt accelerators ('PeVatrons'), but all proposed models of Galactic cosmic-ray accelerators encounter difficulties at exactly these energies. Dozens of Galactic accelerators capable of accelerating particles to energies of tens of teraelectronvolts (of the order of 1013 electronvolts) were inferred from recent \&\#947;-ray observations3. However, none of the currently known accelerators—not even the handful of shell-type supernova remnants commonly believed to supply most Galactic cosmic rays—has shown the characteristic tracers of petaelectronvolt particles, namely, power-law spectra of \&\#947;-rays extending without a cut-off or a spectral break to tens of teraelectronvolts4. Here we report deep \&\#947;-ray observations with arcminute angular resolution of the region surrounding the Galactic Centre, which show the expected tracer of the presence of petaelectronvolt protons within the central 10 parsecs of the Galaxy. We propose that the supermassive black hole Sagittarius A* is linked to this PeVatron. Sagittarius A* went through active phases in the past, as demonstrated by X-ray outbursts5and an outflow from the Galactic Centre6. Although its current rate of particle acceleration is not sufficient to provide a substantial contribution to Galactic cosmic rays, Sagittarius A* could have plausibly been more active over the last 106-107 years, and therefore should be considered as a viable alternative to supernova remnants as a source of petaelectronvolt Galactic cosmic rays.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2017, author = {Abdalla, Hassan E. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Andersson, T. and Anguner, Ekrem Oǧuzhan and Arakawa, M. and Arrieta, M. and Aubert, Pierre and Backes, Michael and Balzer, Arnim and Barnard, Michelle and Becherini, Yvonne and Tjus, J. Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Blackwell, R. and B{\"o}ttcher, Markus and Boisson, Catherine and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Buechele, M. and Bulik, Tomasz and Capasso, M. and Carr, John and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chaves, Ryan C. G. and Chen, Andrew and Chevalier, J. and Coffaro, M. and Colafrancesco, Sergio and Cologna, Gabriele and Condon, B. and Conrad, Jan and Cui, Y. and Davids, I. D. and Decock, J. and Degrange, B. and Deil, C. and Devin, J. and de Wilt, P. and Dirson, L. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dutson, K. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Kruger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Richter, S. and Rieger, F. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Saito, S. and Salek, D. and Sanchez, David M. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Settimo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stycz, K. and Sushch, Iurii and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywucka, N.}, title = {Measurement of the EBL spectral energy distribution using the VHE gamma-ray spectra of HESS blazars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {606}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201731200}, pages = {11}, year = {2017}, abstract = {Very high-energy gamma rays (VHE, E greater than or similar to 100 GeV) propagating over cosmological distances can interact with the low-energy photons of the extragalactic background light (EBL) and produce electron-positron pairs. The transparency of the Universe to VHE gamma rays is then directly related to the spectral energy distribution (SED) of the EBL. The observation of features in the VHE energy spectra of extragalactic sources allows the EBL to be measured, which otherwise is very difficult. An EBL model-independent measurement of the EBL SED with the H.E.S.S. array of Cherenkov telescopes is presented. It was obtained by extracting the EBL absorption signal from the reanalysis of high-quality spectra of blazars. From H.E.S.S. data alone the EBL signature is detected at a significance of 9.5 sigma, and the intensity of the EBL obtained in different spectral bands is presented together with the associated gamma-ray horizon.}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2015, author = {Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Backes, Michael and Balzer, Arnim and Becherini, Yvonne and Tjus, J. Becker and Berge, David and Bernhard, Sabrina and Bernl{\"o}hr, K. and Birsin, E. and Blackwell, R. and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Bregeon, Johan and Brun, Francois and Brun, Pierre and Bryan, Mark and Bulik, Tomasz and Carr, John and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Chen, Andrew and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Djannati-Ata{\"i}, A. and Domainko, W. and Donath, A. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandesl, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, D. and Haeffner, S. and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, A. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieckl, M. A. and Katarzynski, K. and Katz, U. and Kerszberg, D. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Lui, R. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, M. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and de Ona Wilhelmi, E. and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, D. and Sanchez, David M. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van der Walt, J. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Zywucka, N.}, title = {Discovery of variable VHE gamma-ray emission from the binary system 1FGL J1018.6-5856}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {577}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {0004-6361}, doi = {10.1051/0004-6361/201525699}, pages = {6}, year = {2015}, abstract = {Re-observations with the HESS telescope array of the very high-energy (VHE) source HESS J1018-589A that is coincident with the Fermi-LAT gamma-ray binary 1FGL J1018.6-5856 have resulted in a source detection significance of more than 9 sigma and the detection of variability (chi(2)/nu of 238.3/155) in the emitted gamma-ray flux. This variability confirms the association of HESS J1018-589A with the high-energy gamma-ray binary detected Fermi-LAT and also confirms the point-like source as a new VHE binary system. The spectrum of HESS J1018-589A is best fit with a power-law function with photon index Gamma = 2.20 +/- 0.14(stat) +/- 0.2(sys). Emission is detected up to similar to 20 TeV. The mean differential flux level is (2.9 +/- 0.4) x 10(-13) TeV-1 cm(-2) s(-1) at 1 TeV, equivalent to similar to 1\% of the flux from the Crab Nebula at the same energy. Variability is clearly detected the night-by-night light curve. When folded on the orbital period of 16.58 days, the rebinned light curve peaks in phase with the observed X-ray high-energy phaseograms. The fit of the HESS phaseogram to a constant flux provides evidence of periodicity at the level of N-sigma > 3 sigma. The of the VHE phaseogram and measured spectrum suggest a low-inclination, low-eccentricity system with a modest impact from VHE gamma-ray due to pair production (tau less than or similar to 1 at 300 GeV).}, language = {en} }