@misc{ChaabeneLesinskiBehmetal.2020, author = {Chaabene, Helmi and Lesinski, Melanie and Behm, David George and Granacher, Urs}, title = {Performance- and healthrelated benefits of youth resistance training}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {3}, issn = {1866-8364}, doi = {10.25932/publishup-52691}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526912}, pages = {12}, year = {2020}, abstract = {There is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths' exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth.}, language = {en} } @misc{GebelLesinskiBehmetal.2018, author = {Gebel, Arnd and Lesinski, Melanie and Behm, David George and Granacher, Urs}, title = {Effects and dose-response relationship of balance training on balance performance in Youth}, series = {Sports medicine}, volume = {48}, journal = {Sports medicine}, number = {9}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-018-0926-0}, pages = {2067 -- 2089}, year = {2018}, abstract = {Background Effects and dose-response relationships of balance training on measures of balance are well-documented for healthy young and old adults. However, this has not been systematically studied in youth. Objectives The objectives of this systematic review and meta-analysis were to quantify effects of balance training (BT) on measures of static and dynamic balance in healthy children and adolescents. Additionally, dose-response relations for BT modalities (e.g. training period, frequency, volume) were quantified through the analysis of controlled trials. Data Sources A computerized systematic literature search was conducted in the electronic databases PubMed and Web of Science from January 1986 until June 2017 to identify articles related to BT in healthy trained and untrained children and adolescents. Study Eligibility Criteria A systematic approach was used to evaluate articles that examined the effects of BT on balance outcomes in youth. Controlled trials with pre- and post-measures were included if they examined healthy youth with a mean age of 6-19 years and assessed at least one measure of balance (i.e. static/dynamic steady-state balance, reactive balance, proactive balance) with behavioural (e.g. time during single-leg stance) or biomechanical (e.g. centre of pressure displacements during single-leg stance) test methods. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: training modalities (i.e. training period, frequency, volume), balance outcomes (i.e. static and dynamic balance) as well as chronological age, sex (male vs. female), training status (trained vs. untrained), setting (school vs. club), and testing method (biomechanical vs. physical fitness test). Weighted mean standardized mean differences (SMDwm) were calculated using a random-effects model to compute overall intervention effects relative to active and passive control groups. Between-study heterogeneity was assessed using I 2 and chi(2) statistics. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (i.e. training period, training frequency, total number of training sessions, duration of training sessions, and total duration of training per week) on the effectiveness of BT on measures of balance performance. Further, subgroup univariate analyses were computed for each training modality. Additionally, dose-response relationships were characterized independently by interpreting the modality specific magnitude of effect sizes. Methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, our literature search revealed 198 hits of which 17 studies were eligible for inclusion in this systematic review and meta-analysis. Irrespective of age, sex, training status, sport discipline and training method, moderate to large BT-related effects were found for measures of static (SMDwm = 0.71) and dynamic (SMDwm = 1.03) balance in youth. However, our subgroup analyses did not reveal any statistically significant effects of the moderator variables age, sex, training status, setting and testing method on overall balance (i.e. aggregation of static and dynamic balance). BT-related effects in adolescents were moderate to large for measures of static (SMDwm = 0.61) and dynamic (SMDwm = 0.86) balance. With regard to the dose-response relationships, findings from the multivariate random effects meta-regression revealed that none of the examined training modalities predicted the effects of BT on balance performance in adolescents (R-2 = 0.00). In addition, results from univariate analysis have to be interpreted with caution because training modalities were computed as single factors irrespective of potential between-modality interactions. For training period, 12 weeks of training achieved the largest effect (SMDwm = 1.40). For training frequency, the largest effect was found for two sessions per week (SMDwm = 1.29). For total number of training sessions, the largest effect was observed for 24-36 sessions (SMDwm = 1.58). For the modality duration of a single training session, 4-15 min reached the largest effect (SMDwm = 1.03). Finally, for the modality training per week, a total duration of 31-60 min per week (SMDwm = 1.33) provided the largest effects on overall balance in adolescents. Methodological quality of the studies was rated as moderate with a median PEDro score of 6.0. Limitations Dose-response relationships were calculated independently for training modalities (i.e. modality specific) and not interdependently. Training intensity was not considered for the calculation of dose-response relationships because the included studies did not report this training modality. Further, the number of included studies allowed the characterization of dose-response relationships in adolescents for overall balance only. In addition, our analyses revealed a considerable between-study heterogeneity (I-2 = 66-83\%). The results of this meta-analysis have to be interpreted with caution due to their preliminary status. Conclusions BT is a highly effective means to improve balance performance with moderate to large effects on static and dynamic balance in healthy youth irrespective of age, sex, training status, setting and testing method. The examined training modalities did not have a moderating effect on balance performance in healthy adolescents. Thus, we conclude that an additional but so far unidentified training modality may have a major effect on balance performance that was not assessed in our analysis. Training intensity could be a promising candidate. However, future studies are needed to find appropriate methods to assess BT intensity.}, language = {en} } @misc{LesinskiPrieskeGranacher2016, author = {Lesinski, Melanie and Prieske, Olaf and Granacher, Urs}, title = {Effects and dose-response relationships of resistance training on physical performance in youth athletes: a systematic review and meta-analysis}, series = {British journal of sports medicine : the journal of sport and exercise medicine}, volume = {50}, journal = {British journal of sports medicine : the journal of sport and exercise medicine}, publisher = {BMJ Publishing Group}, address = {London}, issn = {0306-3674}, doi = {10.1136/bjsports-2015-095497}, pages = {781 -- 795}, year = {2016}, abstract = {Objectives To quantify age, sex, sport and training type-specific effects of resistance training on physical performance, and to characterise dose-response relationships of resistance training parameters that could maximise gains in physical performance in youth athletes. Design Systematic review and meta-analysis of intervention studies. Data sources Studies were identified by systematic literature search in the databases PubMed and Web of Science (1985-2015). Weighted mean standardised mean differences (SMDwm) were calculated using random-effects models. Eligibility criteria for selecting studies Only studies with an active control group were included if these investigated the effects of resistance training in youth athletes (6-18 years) and tested at least one physical performance measure. Results 43 studies met the inclusion criteria. Our analyses revealed moderate effects of resistance training on muscle strength and vertical jump performance (SMDwm 0.8-1.09), and small effects on linear sprint, agility and sport-specific performance (SMDwm 0.58-0.75). Effects were moderated by sex and resistance training type. Independently computed dose-response relationships for resistance training parameters revealed that a training period of >23 weeks, 5 sets/exercise, 6-8 repetitions/set, a training intensity of 80-89\% of 1 repetition maximum (RM), and 3-4 min rest between sets were most effective to improve muscle strength (SMDwm 2.09-3.40). Summary/conclusions Resistance training is an effective method to enhance muscle strength and jump performance in youth athletes, moderated by sex and resistance training type. Dose-response relationships for key training parameters indicate that youth coaches should primarily implement resistance training programmes with fewer repetitions and higher intensities to improve physical performance measures of youth athletes.}, language = {en} } @misc{HortobagyiLesinskiGaebleretal.2015, author = {Hortob{\´a}gyi, Tibor and Lesinski, Melanie and G{\"a}bler, Martijn and VanSwearingen, Jessie M. and Malatesta, Davide and Granacher, Urs}, title = {Effects of three types of exercise interventions on healthy old adults' gait speed}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, issn = {1866-8364}, doi = {10.25932/publishup-43115}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431150}, pages = {17}, year = {2015}, abstract = {Background: Habitual walking speed predicts many clinical conditions later in life, but it declines with age. However, which particular exercise intervention can minimize the age-related gait speed loss is unclear. Purpose: Our objective was to determine the effects of strength, power, coordination, and multimodal exercise training on healthy old adults' habitual and fast gait speed. Methods: We performed a computerized systematic literature search in PubMed and Web of Knowledge from January 1984 up to December 2014. Search terms included 'Resistance training', 'power training', 'coordination training', 'multimodal training', and 'gait speed (outcome term). Inclusion criteria were articles available in full text, publication period over past 30 years, human species, journal articles, clinical trials, randomized controlled trials, English as publication language, and subject age C65 years. The methodological quality of all eligible intervention studies was assessed using the Physiotherapy Evidence Database (PEDro) scale. We computed weighted average standardized mean differences of the intervention-induced adaptations in gait speed using a random-effects model and tested for overall and individual intervention effects relative to no-exercise controls. Results: A total of 42 studies (mean PEDro score of 5.0 +/- 1.2) were included in the analyses (2495 healthy old adults; age 74.2 years [64.4-82.7]; body mass 69.9 +/- 4.9 kg, height 1.64 +/- 0.05 m, body mass index 26.4 +/- 1.9 kg/m(2), and gait speed 1.22 +/- 0.18 m/s). The search identified only one power training study, therefore the subsequent analyses focused only on the effects of resistance, coordination, and multimodal training on gait speed. The three types of intervention improved gait speed in the three experimental groups combined (n = 1297) by 0.10 m/s (+/- 0.12) or 8.4 \% (+/- 9.7), with a large effect size (ES) of 0.84. Resistance (24 studies; n = 613; 0.11 m/s; 9.3 \%; ES: 0.84), coordination (eight studies, n = 198; 0.09 m/s; 7.6 \%; ES: 0.76), and multimodal training (19 studies; n = 486; 0.09 m/s; 8.4 \%, ES: 0.86) increased gait speed statistically and similarly. Conclusions: Commonly used exercise interventions can functionally and clinically increase habitual and fast gait speed and help slow the loss of gait speed or delay its onset.}, language = {en} } @misc{HortobagyiLesinskiFernandez‐del‐Olmoetal.2015, author = {Hortob{\´a}gyi, Tibor and Lesinski, Melanie and Fernandez-del-Olmo, Miguel and Granacher, Urs}, title = {Small and inconsistent effects of whole body vibration on athletic performance}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {627}, issn = {1866-8364}, doi = {10.25932/publishup-43199}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431993}, pages = {23}, year = {2015}, abstract = {Purpose We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Methods Systematic literature review and meta-analysis. Results Whole body vibration combined with exercise had an overall 0.3 \% acute effect on maximal voluntary leg force (-6.4 \%, effect size = -0.43, 1 study), leg power (4.7 \%, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 \%, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 \%, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 \% chronic effect on maximal voluntary leg force (14.6 \%, weighted mean effect size = 0.44, 5 studies), leg power (10.7 \%, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 \%, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 \%, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Conclusions Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance.}, language = {en} } @misc{HortobagyiLesinskiFernandezdelOlmoetal.2015, author = {Hortobagyi, Tibor and Lesinski, Melanie and Fernandez-del-Olmo, Miguel and Granacher, Urs}, title = {Small and inconsistent effects of whole body vibration on athletic performance: a systematic review and meta-analysis}, series = {European journal of applied physiology}, volume = {115}, journal = {European journal of applied physiology}, number = {8}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-015-3194-9}, pages = {1605 -- 1625}, year = {2015}, abstract = {We quantified the acute and chronic effects of whole body vibration on athletic performance or its proxy measures in competitive and/or elite athletes. Systematic literature review and meta-analysis. Whole body vibration combined with exercise had an overall 0.3 \% acute effect on maximal voluntary leg force (-6.4 \%, effect size = -0.43, 1 study), leg power (4.7 \%, weighted mean effect size = 0.30, 6 studies), flexibility (4.6 \%, effect size = -0.12 to 0.22, 2 studies), and athletic performance (-1.9 \%, weighted mean effect size = 0.26, 6 studies) in 191 (103 male, 88 female) athletes representing eight sports (overall effect size = 0.28). Whole body vibration combined with exercise had an overall 10.2 \% chronic effect on maximal voluntary leg force (14.6 \%, weighted mean effect size = 0.44, 5 studies), leg power (10.7 \%, weighted mean effect size = 0.42, 9 studies), flexibility (16.5 \%, effect size = 0.57 to 0.61, 2 studies), and athletic performance (-1.2 \%, weighted mean effect size = 0.45, 5 studies) in 437 (169 male, 268 female) athletes (overall effect size = 0.44). Whole body vibration has small and inconsistent acute and chronic effects on athletic performance in competitive and/or elite athletes. These findings lead to the hypothesis that neuromuscular adaptive processes following whole body vibration are not specific enough to enhance athletic performance. Thus, other types of exercise programs (e.g., resistance training) are recommended if the goal is to improve athletic performance.}, language = {en} } @article{LesinskiHerzSchmelcheretal.2020, author = {Lesinski, Melanie and Herz, Michael and Schmelcher, Alina and Granacher, Urs}, title = {Effects of resistance training on physical fitness in healthy children and adolescents}, series = {Sports medicine}, volume = {50}, journal = {Sports medicine}, number = {11}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-020-01327-3}, pages = {1901 -- 1928}, year = {2020}, abstract = {Background Over the past decades, an exponential growth has occurred with regards to the number of scientific publications including meta-analyses on youth resistance training (RT). Accordingly, it is timely to summarize findings from meta-analyses in the form of an umbrella review. Objectives To systematically review and summarise the findings of published meta-analyses that investigated the effects of RT on physical fitness in children and adolescents. Design Systematic umbrella review of meta-analyses. Data Sources Meta-analyses were identified using systematic literature searches in the databases PubMed, Web of Science, and Cochrane Library. Eligibility Criteria for Selecting Meta-analyses Meta-analyses that examined the effects of RT on physical fitness (e.g., muscle strength, muscle power) in healthy youth (<= 18 years). Results Fourteen meta-analyses were included in this umbrella review. Eleven of these meta-analyses reported between-subject effect sizes which are important to eliminate bias due to growth and maturation. RT produced medium-to-large effects on muscle strength, small-to-large effects on muscle power, small-to-medium effects on linear sprint, a medium effect on agility/change-of-direction speed, small-to-large effects on throwing performance, and a medium effect on sport-specific enhancement. There were few consistent moderating effects of maturation, age, sex, expertise level, or RT type on muscle strength and muscle power across the included meta-analyses. The analysed meta-analyses showed low-to-moderate methodological quality (AMSTAR2) as well as presented evidence of low-to-very low quality (GRADE). Conclusion This umbrella review proved the effectiveness of RT in youth on a high evidence level. The magnitude of effects varies according to the respective outcome measure and it appears to follow the principle of training specificity. Larger effect sizes were found for strength-related outcome measures. Future studies should consistently report data on participants' maturational status. More research is needed with prepubertal children and girls, irrespective of their maturational status.}, language = {en} } @article{LesinskiPrieskeHelmetal.2017, author = {Lesinski, Melanie and Prieske, Olaf and Helm, Norman and Granacher, Urs}, title = {Effects of Soccer Training on Anthropometry, Body Composition, and Physical Fitness during a Soccer Season in Female Elite Young Athletes: A Prospective Cohort Study}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.01093}, pages = {13}, year = {2017}, abstract = {The objectives of this study were to (i) describe soccer training (e.g., volume, types), anthropometry, body composition, and physical fitness and (0 compute associations between soccer training data and relative changes of anthropometry, body composition, and physical fitness during a soccer season in female elite young athletes. Seasonal training (i.e., day-to-day training volume/types) as well as variations in anthropometry (e.g., body height/mass), body composition (e.g., lean body/fat mass), and physical fitness (e.g., muscle strength/power, speed, balance) were collected from 17 female elite young soccer players (15.3 +/- 0.5 years) over the training periods (i.e., preparation, competition, transition) of a soccer season that resulted in the German championship title in under-17 female soccer. Training volume/types, anthropometrics, body composition, and physical fitness significantly varied over a soccer season. During the two preparation periods, higher volumes in resistance and endurance training were performed (2.00 <= d <= 18.15; p < 0.05), while higher sprint and tactical training volumes were applied during the two competition periods (2.22 <= d <= 11.18; p < 0.05). Body height and lean body mass increased over the season (2.50 <= d <= 3.39; p < 0.01). In terms of physical fitness, significant performance improvements were found over the soccer season in measures of balance, endurance, and sport-specific performance (2.52 <= d <= 3.95; p < 0.05). In contrast, no statistically significant changes were observed for measures of muscle power/endurance, speed, and change-of-direction speed. Of note, variables of muscle strength (i.e., leg extensors) significantly decreased (d = 2.39: p < 0.01) over the entire season. Our period specific sub analyses revealed significant performance improvements during the first round of the season for measures of muscle power/endurance, and balance (0.89 <= d <= 4.01; p < 0.05). Moreover, change-of-direction speed significantly declined after the first round of the season, i.e., transition period (d = 2.83; p < 0.01). Additionally, significant medium-to-large associations were observed between training and anthropometrics/body composition/physical fitness (-0.541 <= r <= 0.505). Soccer training and/or growth/maturation contributed to significant variations in anthropometry, body composition, and physical fitness outcomes throughout the different training periods over the course of a soccer season in female elite young soccer players. However, changes in components of fitness were inconsistent (e.g., power, speed, strength). Thus, training volume and/or types should be carefully considered in order to develop power-, speed- or strength-related fitness measures more efficiently throughout the soccer season.}, language = {en} } @article{LesinskiMuehlbauerBueschetal.2013, author = {Lesinski, Melanie and M{\"u}hlbauer, Thomas and Buesch, Dirk and Granacher, Urs}, title = {Acute Effects of Postactivation Potentiation on Strength and Speed Performance in Athletes}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {27}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {3}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0033-1335414}, pages = {147 -- 155}, year = {2013}, abstract = {Background: The contractile history of a muscle or a muscle group can result in an acute enhancement of subsequent muscle force output. This phenomenon is referred to as postactivation potentiation (PAP) and it was frequently substantiated in original research manuscripts, systematic literature reviews, and meta-analyses. However, there is a lack in the literature regarding precise dose-response relations. This literature review describes the main determinants of PAP effects and additionally presents the state of the art regarding the acute effects of PAP protocols on measures of strength, power, and speed in subelite and elite athletes of different sport disciplines. Furthermore, an attempt is made to demonstrate evidence-based information concerning the design of effective PAP protocols. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Google Scholar (1995 - March 2013). In total, 23 studies met the inclusionary criteria for review. Results: Findings from our literature review indicate that various conditioning activities produce acute PAP effects in subelite and particularly elite athletes. More specifically, conditioning activities that are characterised by multiple sets, moderate to high intensities (60 - 84 \% of the one repetition maximum), and rest intervals of 7 - 10 min. following the conditioning activity have the potential to induce short-term improvements in muscle force output and sports performance. Conclusion: It is recommended that subelite and particularly elite athletes from strength, power, and speed disciplines apply specifically tailored conditioning activities during the acute preparation process for competition to induce performance enhancing PAP effects.}, language = {de} } @article{ThielePrieskeLesinskietal.2020, author = {Thiele, Dirk and Prieske, Olaf and Lesinski, Melanie and Granacher, Urs}, title = {Effects of Equal Volume Heavy-Resistance Strength Training Versus Strength Endurance Training on Physical Fitness and Sport-Specific Performance in Young Elite Female Rowers}, series = {Frontiers in Physiology}, volume = {11}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2020.00888}, pages = {12}, year = {2020}, abstract = {Strength training is an important means for performance development in young rowers. The purpose of this study was to examine the effects of a 9-week equal volume heavy-resistance strength training (HRST) versus strength endurance training (SET) in addition to regular rowing training on primary (e.g., maximal strength/power) and secondary outcomes (e.g., balance) in young rowers. Twenty-six female elite adolescent rowers were assigned to an HRST (n = 12; age: 13.2 ± 0.5 yrs; maturity-offset: +2.0 ± 0.5 yrs) or a SET group (n = 14; age: 13.1 ± 0.5 yrs; maturity-offset: +2.1 ± 0.5 yrs). HRST and SET comprised lower- (i.e., leg press/knee flexion/extension), upper-limbs (i.e., bench press/pull; lat-pull down), and complex exercises (i.e., rowing ergometer). HRST performed four sets with 12 repetitions per set at an intensity of 75-95\% of the one-repetition maximum (1-RM). SET conducted four sets with 30 repetitions per set at 50-60\% of the 1-RM. Training volume was matched for overall repetitions × intensity × training per week. Pre-post training, tests were performed for the assessment of primary [i.e., maximal strength (e.g., bench pull/knee flexion/extension 1-RM/isometric handgrip test), muscle power (e.g., medicine-ball push test, triple hop, drop jump, and countermovement jump), anaerobic endurance (400-m run), sport-specific performance (700-m rowing ergometer trial)] and secondary outcomes [dynamic balance (Y-balance test), change-of-direction (CoD) speed (multistage shuttle-run test)]. Adherence rate was >87\% and one athlete of each group dropped out. Overall, 24 athletes completed the study and no test or training-related injuries occurred. Significant group × time interactions were observed for maximal strength, muscle power, anaerobic endurance, CoD speed, and sport-specific performance (p ≤ 0.05; 0.45 ≤ d ≤ 1.11). Post hoc analyses indicated larger gains in maximal strength and muscle power following HRST (p ≤ 0.05; 1.81 ≤ d ≤ 3.58) compared with SET (p ≤ 0.05; 1.04 ≤ d ≤ 2.30). Furthermore, SET (p ≤ 0.01; d = 2.08) resulted in larger gains in sport-specific performance compared with HRST (p < 0.05; d = 1.3). Only HRST produced significant pre-post improvements for anaerobic endurance and CoD speed (p ≤ 0.05; 1.84 ≤ d ≤ 4.76). In conclusion, HRST in addition to regular rowing training was more effective than SET to improve selected measures of physical fitness (i.e., maximal strength, muscle power, anaerobic endurance, and CoD speed) and SET was more effective than HRST to enhance sport-specific performance gains in female elite young rowers.}, language = {en} } @article{ChaabeneLesinskiBehmetal.2020, author = {Chaabene, Helmi and Lesinski, Melanie and Behm, David George and Granacher, Urs}, title = {Performance- and healthrelated benefits of youth resistance training}, series = {Sports Orthopaedics and Traumatology}, volume = {36}, journal = {Sports Orthopaedics and Traumatology}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, pages = {10}, year = {2020}, abstract = {Performance- and healthrelated benefits of yoThere is ample evidence that youth resistance training (RT) is safe, joyful, and effective for different markers of performance (e.g., muscle strength, power, linear sprint speed) and health (e.g., injury prevention). Accordingly, the first aim of this narrative review is to present and discuss the relevance of muscle strength for youth physical development. The second purpose is to report evidence on the effectiveness of RT on muscular fitness (muscle strength, power, muscle endurance), on movement skill performance and injury prevention in youth. There is evidence that RT is effective in enhancing measures of muscle fitness in children and adolescents, irrespective of sex. Additionally, numerous studies indicate that RT has positive effects on fundamental movement skills (e.g., jumping, running, throwing) in youth regardless of age, maturity, training status, and sex. Further, irrespective of age, sex, and training status, regular exposure to RT (e.g., plyometric training) decreases the risk of sustaining injuries in youth. This implies that RT should be a meaningful element of youths' exercise programming. This has been acknowledged by global (e.g., World Health Organization) and national (e.g., National Strength and Conditioning Association) health- and performance-related organizations which is why they recommended to perform RT as an integral part of weekly exercise programs to promote muscular strength, fundamental movement skills, and to resist injuries in youth.uth resistance training}, language = {en} } @article{WallentaGranacherLesinskietal.2016, author = {Wallenta, Christopher and Granacher, Urs and Lesinski, Melanie and Schuenemann, C. and M{\"u}hlbauer, Thomas}, title = {Effects of Complex Versus Block Strength Training on the Athletic Performance of Elite Youth Soccer Players}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\~A}\ivention, Rehabilitation}, volume = {30}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\~A}\ivention, Rehabilitation}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0041-106949}, pages = {31 -- 37}, year = {2016}, abstract = {Hintergrund: Kraft und Schnelligkeit stellen bedeutsame leistungsdeterminierende Faktoren im Fußball dar. Durch Komplextraining (Kombination aus Kraft- und plyometrischen {\"U}bungen in einer Trainingseinheit) lassen sich Kraft- und Schnelligkeitswerte von Athleten steigern. Unklar ist jedoch, ob ein Komplextraining (KT) gegen{\"u}ber einem herk{\"o}mmlichen blockweisen Krafttraining (BT) zu gr{\"o}ßeren sportmotorischen Leistungssteigerungen f{\"u}hrt. Das Ziel der Studie war es, die Effekte von KT versus BT auf Variablen der Kraft, Schnelligkeit und Gewandtheit von Nachwuchsleistungsfußballern zu untersuchen. Methode: Zus{\"a}tzlich zum regul{\"a}ren Fußballtraining (ca. 6 × pro Woche, je 60 - 90 min.) f{\"u}hrten 18 m{\"a}nnliche Nachwuchsleistungsfußballer {\"u}ber sechs Wochen (2 × pro Woche, je 30 min.) entweder ein progressives KT (n = 10, Alter: 18,5 ± 2,2 Jahre) oder BT (n = 8, Alter: 18,1 ± 1,6 Jahre) durch. Vor und nach dem Training wurden Tests zur Erfassung der Kraft (Einer-Wiederholungs-Maximum [EWM] Kniebeuge), der Sprungkraft (Hockstrecksprung [HSS]), der Schnelligkeit (30-m-Sprint) und der Gewandtheit (T-Test) durchgef{\"u}hrt. Es wurden parameterfreie Verfahren zur Bestimmung von Unterschieden innerhalb (Wilcoxon-Test) und zwischen (Mann-Whitney-U-Test) den beiden Gruppen gerechnet. Ergebnisse: Sowohl KT als auch BT sind sichere (keine trainings- aber sechs spielbedingte Verletzungen) und geeignete (Trainingsteilnahme in KT und BT: \&\#8805; 80 \%) Trainingsmaßnahmen in Erg{\"a}nzung zum regul{\"a}ren Fußballtraining. Die statistische Analyse ergab signifikante Verbesserungen vom Pr{\"a}- zum Posttest f{\"u}r die KT-Gruppe im EWM (p = 0,043) und im HSS (p = 0,046) sowie f{\"u}r die BT-Gruppe in der Sprintzeit {\"u}ber 5 m (p = 0,039) und 10 m (p = 0,026). Zudem zeigten sich f{\"u}r beide Gruppen signifikante Verbesserungen im T-Test (KT: p = 0,046; BT: p = 0,027). Der Gruppenvergleich (KT vs. BT) {\"u}ber die Zeit (Post- minus Pr{\"a}test) offenbarte keine bedeutsamen Unterschiede. Schlussfolgerung: Sowohl sechsw{\"o}chiges KT als auch BT f{\"u}hrten zu signifikanten Verbesserungen sportmotorischer Leistungen bei Nachwuchsleistungsfußballern. Allerdings konnten keine zus{\"a}tzlich leistungssteigernden Effekte von KT im Vergleich zu BT ermittelt werden. In zuk{\"u}nftigen Studien sollte gepr{\"u}ft werden, ob die beobachteten testspezifischen Ver{\"a}nderungen, d. h. Verbesserung der Kraft/Sprungkraft in der KT-Gruppe und Verbesserung der Schnelligkeit in der BT-Gruppe der gew{\"a}hlten {\"U}bungsanordnung geschuldet sind oder einen generellen Effekt darstellen. Background: Muscle strength and speed are important determinants of soccer performance. It has previously been shown that complex training (CT, combination of strength and plyometric exercises within a single training session) is effective to enhance strength and speed performance in athletes. However, it is unresolved whether CT is more effective than conventional strength training that is delivered in one single block (BT) to increase proxies of athletic performance. Thus, the aim of the present study was to investigate the effects of CT versus BT on measures of muscle strength/power, speed, and agility in elite youth soccer players. Methods: Eighteen male elite youth soccer players conducted six weeks (2 sessions/week, 30 min, each) of progressive CT (n = 10, age: 18,5 +/- 2.2 years) or BT (n=8, age: 18.1 +/- 1.6 years) in addition to their regular soccer training (approx. 6 sessions/week, 60-90 min, each). Before and after training, tests were conducted for the assessment of strength (one -repetition maximum [1RM] squat), power (countermovement jump [CMJ]), speed (30-m linear sprint), and agility (T test). Non-parametric analyses were used to calculate differences within (Wilcoxon test) and between (Mann-Whitney-U test) groups. Results: Both CT and BT proved to be safe (i.e. no training-related, but six match -related injuries reported) and feasible (i.e. attendance rate of 80\% in both groups) training regimens when implemented in addition to regular soccer training. The statistical analysis revealed significant improvements from pre-training to post-training tests for the CT group in 1 RM squat (p =0.043) and CMJ height (p =0,046). For the BT -group, significantly enhanced sprint times were observed over 5 m (p = 0.039) and 10 m (p = 0.026), Furthermore, both groups significantly improved their t test time (CT: p =0.046; BT: p =0.027). However, group comparisons (CT vs. BT) over time (post-training minus pre-training test) did not show any significant differences. Conclusion: Six weeks of CT and BT resulted in significant improvements in proxies of athletic performance. Yet CT did not produce any additional effects compared to BT. Future research is needed to examine whether the observed test-specific changes, i.e. improvements in strength/power for the CT-group and improvements in speed for the BT-group, are due to the applied configuration of strength, plyometric, and sprint exercises or if they rather indicate a general training response.}, language = {de} } @article{PrieskeDempsLesinskietal.2017, author = {Prieske, Olaf and Demps, Marie and Lesinski, Melanie and Granacher, Urs}, title = {Combined Effects of Fatigue and Surface Instability on Jump Biomechanics in Elite Athletes}, series = {International journal of sports medicine}, volume = {38}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0043-111894}, pages = {781 -- 790}, year = {2017}, abstract = {The present study aimed to examine the effects of fatigue and surface instability on kinetic and kinematic jump performance measures. Ten female and 10 male elite volleyball players (18 +/- 2 years) performed repetitive vertical double-leg box jumps until failure. Pre and post fatigue, jump height/performance index, ground reaction force and knee flexion/valgus angles were assessed during drop and countermovement jumps on stable and unstable surfaces. Fatigue, surface condition, and sex resulted in significantly lower drop jump performance and ground reaction force (p0.031, 1.1d3.5). Additionally, drop jump knee flexion angles were significantly lower following fatigue (p=0.006, d=1.5). A significant fatiguexsurfacexsex interaction (p=0.020, d=1.2) revealed fatigue-related decrements in drop jump peak knee flexion angles under unstable conditions and in men only. Knee valgus angles were higher on unstable compared to stable surfaces during drop jumps and in females compared to males during drop and countermovement jumps (p0.054, 1.0d1.1). Significant surfacexsex interactions during countermovement jumps (p=0.002, d=1.9) indicated that knee valgus angles at onset of ground contact were significantly lower on unstable compared to stable surfaces in males but higher in females. Our findings revealed that fatigue and surface instability resulted in sex-specific knee motion strategies during jumping in elite volleyball players.}, language = {en} } @article{LesinskiPrieskeBeurskensetal.2017, author = {Lesinski, Melanie and Prieske, Olaf and Beurskens, Rainer and Behm, David George and Granacher, Urs}, title = {Effects of drop height and surface instability on neuromuscular activation during drop jumps}, series = {Scandinavian journal of medicine \& science in sports}, volume = {27}, journal = {Scandinavian journal of medicine \& science in sports}, publisher = {Wiley}, address = {Hoboken}, issn = {0905-7188}, doi = {10.1111/sms.12732}, pages = {1090 -- 1098}, year = {2017}, abstract = {The purpose of this study was to examine whether drop height-induced changes in leg muscle activity during drop jumps (DJ) are additionally modulated by surface condition. Twenty-four healthy participants (23.7 +/- 1.8years) performed DJs on a force plate on stable, unstable, and highly unstable surfaces using different drop heights (i.e., 20cm, 40cm, 60cm). Electromyographic (EMG) activity of soleus (SOL), gastrocnemius (GM), tibialis anterior (TA) muscles and coactivation of TA/SOL and TA/GM were analyzed for time intervals 100ms prior to ground contact (preactivation) and 30-60ms after ground contact [short latency response (SLR)]. Increasing drop heights resulted in progressively increased SOL and GM activity during preactivation and SLR (P<0.01; 1.01 d 5.34) while TA/SOL coactivation decreased (P<0.05; 0.51 d 3.01). Increasing surface instability produced decreased activities during preactivation (GM) and SLR (GM, SOL) (P<0.05; 1.36 d 4.30). Coactivation increased during SLR (P<0.05; 1.50 d 2.58). A significant drop heightxsurface interaction was observed for SOL during SLR. Lower SOL activity was found on unstable compared to stable surfaces for drop heights 40cm (P<0.05; 1.25 d 2.12). Findings revealed that instability-related changes in activity of selected leg muscles are minimally affected by drop height.}, language = {en} } @misc{LesinskiMuehlbauerGranacher2017, author = {Lesinski, Melanie and M{\"u}hlbauer, Thomas and Granacher, Urs}, title = {Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400967}, pages = {9}, year = {2017}, abstract = {Background: The aim of the present study was to verify concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height. - Methods: Nineteen female sub-elite youth soccer players (mean age: 14.7 ± 0.6 years) performed three trials of countermovement (CMJ) and squat jumps (SJ), respectively. Maximal vertical jump height was simultaneously quantified with the Gyko system, a Kistler force-plate (i.e., gold standard), and another criterion device that is frequently used in the field, the Optojump system. - Results: Compared to the force-plate, the Gyko system determined significant systematic bias for mean CMJ (-0.66 cm, p < 0.01, d = 1.41) and mean SJ (-0.91 cm, p < 0.01, d = 1.69) height. Random bias was ± 3.2 cm for CMJ and ± 4.0 cm for SJ height and intraclass correlation coefficients (ICCs) were "excellent" (ICC = 0.87 for CMJ and 0.81 for SJ). Compared to the Optojump device, the Gyko system detected a significant systematic bias for mean CMJ (0.55 cm, p < 0.05, d = 0.94) but not for mean SJ (0.39 cm) height. Random bias was ± 3.3 cm for CMJ and ± 4.2 cm for SJ height and ICC values were "excellent" (ICC = 0.86 for CMJ and 0.82 for SJ). - Conclusion: Consequently, apparatus specific regression equations were provided to estimate true vertical jump height for the Kistler force-plate and the Optojump device from Gyko-derived data. Our findings indicate that the Gyko system cannot be used interchangeably with a Kistler force-plate and the Optojump device in trained individuals. It is suggested that practitioners apply the correction equations to estimate vertical jump height for the force-plate and the Optojump system from Gyko-derived data.}, language = {en} } @phdthesis{Lesinski2019, author = {Lesinski, Melanie}, title = {Modulating factors for drop jump performance}, school = {Universit{\"a}t Potsdam}, pages = {viii, 57, xiii}, year = {2019}, abstract = {Background and objectives: Drop jumps (DJs) are well-established exercise drills during plyometric training. Several sports are performed under unstable surface conditions (e.g., soccer, beach volleyball, gymnastics). To closely mimic sport-specific demands, plyometric training includes DJs on both stable and unstable surfaces. According to the mechanical properties of the unstable surface (e.g., thickness, stiffness), altered temporal, mechanical, and physiological demands have been reported from previous cross-sectional studies compared with stable conditions. However, given that the human body simultaneously interacts with various factors (e.g., drop height, footwear, gender) during DJs on unstable surfaces, the investigation of isolated effects of unstable surface conditions might not be sufficient for designing an effective and safe DJ stimulus. Instead, the combined investigation of different factors and their interaction with surface instability have to be taken into consideration. Therefore, the present doctoral thesis seeks to complement our knowledge by examining the main and interaction effects of surface instability, drop height, footwear, and gender on DJ performance, knee joint kinematics, and neuromuscular activation. Methods: Healthy male and female physically active sports science students aged 19-26 years participated in the cross-sectional studies. Jump performance, sagittal and frontal plane knee joint kinematics, and leg muscle activity were measured during DJs on stable (i.e., firm force plate) and (highly) unstable surfaces (i.e., one or two AIREX® balance pads) from different drop heights (i.e., 20 cm, 40 cm, 60 cm) or under multiple footwear conditions (i.e., barefoot, minimal shoes, cushioned shoes). Results: Findings revealed that surface instability caused a DJ performance decline, reduced sagittal plane knee joint kinematics, and lower leg muscle activity during DJs. Sagittal plane knee joint kinematics as well as leg muscle activity decreased even more with increasing surface instability (i.e., two vs. one AIREX® balance pads). Higher (60 cm) compared to lower drop heights (≤ 40 cm) resulted in a DJ performance decline. In addition, increased sagittal plane knee joint kinematics as well as higher shank muscle activity were found during DJs from higher (60 cm) compared to lower drop heights (≤ 40 cm). Footwear properties almost exclusively affected frontal plane knee joint kinematics, indicating larger maximum knee valgus angles when performing DJs barefoot compared to shod. Between the different shoe properties (i.e., minimal vs. cushioned shoes), no significant differences during DJs were found at all. Only a few significant surface-drop height as well as surface-footwear interactions were found during DJs. They mainly indicated that drop height- and footwear-related effects are more pronounced during DJs on unstable compared to stable surfaces. In this regard, the maximum knee valgus angle was significantly greater when performing DJs from high drop heights (60 cm), but only on highly unstable surface. Further, braking and push-off times were significantly longer when performing DJs barefoot compared to shod, but only on unstable surface. Finally, analyses indicated no significant interactions with the gender factor. Conclusions: The findings of the present cumulative thesis indicate that stable rather than unstable surfaces as well as moderate (≤ 40 cm) rather than high (60 cm) drop heights provide sufficient stimuli to perform DJs. Furthermore, findings suggest that DJs on highly unstable surfaces (i.e., two AIREX® balance pads) from high drop heights (60 cm) as well as barefoot compared to shod seem to increase maximal knee valgus angle/stress by providing a more harmful DJ stimulus. Neuromuscular activation strategies appear to be modified by surface instability and drop height. However, leg muscle activity is only marginally effected by footwear and by the interactions of various external factors i.e., surface instability, drop height, footwear). Finally, gender did not significantly modulate the main or interaction effects of the observed external factors during DJs.}, language = {en} } @article{LesinskiPrieskeDempsetal.2016, author = {Lesinski, Melanie and Prieske, Olaf and Demps, Marie and Granacher, Urs}, title = {Effects of fatigue and surface instability on neuromuscular performance during jumping}, series = {Der Schmerz : Organ der Deutschen Gesellschaft zum Studium des Schmerzes, der {\~A}-sterreichischen Schmerzgesellschaft und der Deutschen Interdisziplin{\~A}\iren Vereinigung f{\~A}¼r Schmerztherapie}, volume = {26}, journal = {Der Schmerz : Organ der Deutschen Gesellschaft zum Studium des Schmerzes, der {\~A}-sterreichischen Schmerzgesellschaft und der Deutschen Interdisziplin{\~A}\iren Vereinigung f{\~A}¼r Schmerztherapie}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0905-7188}, doi = {10.1111/sms.12548}, pages = {1140 -- 1150}, year = {2016}, abstract = {It has previously been shown that fatigue and unstable surfaces affect jump performance. However, the combination thereof is unresolved. Thus, the purpose of this study was to examine the effects of fatigue and surface instability on jump performance and leg muscle activity. Twenty elite volleyball players (18 +/- 2 years) performed repetitive vertical double-leg box jumps until failure. Before and after a fatigue protocol, jump performance (i.e., jump height) and electromyographic activity of selected lower limb muscles were recorded during drop jumps (DJs) and countermovement jumps (CMJs) on a force plate on stable and unstable surfaces (i.e., balance pad on top of force plate). Jump performance (3-7\%; P < 0.05; 1.14 <= d <= 2.82), and muscle activity (2-27\%; P < 0.05; 0.59 <= d <= 3.13) were lower following fatigue during DJs and CMJs, and on unstable compared with stable surfaces during DJs only (jump performance: 8\%; P < 0.01; d = 1.90; muscle activity: 9-25\%; P < 0.05; 1.08 <= d <= 2.54). No statistically significant interactions of fatigue by surface condition were observed. Our findings revealed that fatigue impairs neuromuscular performance during DJs and CMJs in elite volleyball players, whereas surface instability affects neuromuscular DJ performance only. Absent fatigue x surface interactions indicate that fatigue-induced changes in jump performance are similar on stable and unstable surfaces in jump-trained athletes.}, language = {en} } @misc{LesinskiMuehlbauerBueschetal.2014, author = {Lesinski, Melanie and M{\"u}hlbauer, Thomas and Buesch, Dirk and Granacher, Urs}, title = {Effects of complex training on strength and speed performance in athletes: A systematic review effects of complex training on athletic performance}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {28}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0034-1366145}, pages = {85 -- 107}, year = {2014}, abstract = {Background: Post-activation potentiation (PAP) can elicit acute performance enhancements in variables of strength, power, and speed. However, it is unresolved whether the frequent integration of PAP eliciting conditioning activities in training (i.e., complex training) results in long-term adaptations. In this regard, it is of interest to know whether complex training results in larger performance enhancements as compared to more traditional and isolated training regimens (e. g., resistance training). Thus, this systematic literature review summarises the current state of the art regarding the effects of complex training on measures of strength, power, and speed in recreational, subelite, and elite athletes. Further, it provides information on training volume and intensities that proved to be effective. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Web of Science (1995 to September 2013). In total, 17 studies met the inclusionary criteria for review. Ten studies examined alternating complex training and 7 studies sequenced complex training. Results: Our findings indicated small to large effects for both alternating complex training (countermovement jump height: +7.4 \% [ESd = -0.43]; squat jump height: +9.8 \% [ESd = -0.66]; sprint time: -2.4\% [ESd = 0.63]) and sequenced complex training (countermovement jump height: +6.0 \% [ESd = -0.83]; squat jump height: +11.9\% [ESd = -0.97], sprint time: -0.7\% [ESd = 0.52]) in measures of power and speed. As compared to more traditional training regimens, alternating and sequenced complex training showed only small effects in measures of strength, power, and speed. A more detailed analysis of alternating complex training revealed larger effects in countermovement jump height in recreational athletes (+9.7\% [ESd = -0.57]) as compared to subelite and elite athletes (+2.7\% [ESd = -0.15]). Based on the relevant and currently available literature, missing data (e.g., time for rest interval) and diverse information regarding training volume and intensity do not allow us to establish evidence-based dose-response relations for complex training. Conclusion: Complex training represents an effective training regimen for athletes if the goal is to enhance strength, power, and speed. Studies with high methodological quality have to be conducted in the future to elucidate whether complex training is less, similar, or even more effective compared to more traditional training regimens. Finally, it should be clarified whether alternated and/or sequenced conditioning activities implemented in complex training actually elicit acute PAP effects.}, language = {de} } @misc{LesinskiSchmelcherHerzetal.2020, author = {Lesinski, Melanie and Schmelcher, Alina and Herz, Michael and Puta, Christian and Gabriel, Holger and Arampatzis, Adamantios and Laube, Gunnar and B{\"u}sch, Dirk and Granacher, Urs}, title = {Maturation-, age-, and sex-specific anthropometric and physical fitness percentiles of German elite young athletes}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {662}, issn = {1866-8364}, doi = {10.25932/publishup-48026}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-480268}, pages = {21}, year = {2020}, abstract = {The aim of this study was to establish maturation-, age-, and sex-specific anthropometric and physical fitness percentile reference values of young elite athletes from various sports. Anthropometric (i.e., standing and sitting body height, body mass, body mass index) and physical fitness (i.e., countermovement jump, drop jump, change-of-direction speed [i.e., T-test], trunk muscle endurance [i.e., ventral Bourban test], dynamic lower limbs balance [i.e., Y-balance test], hand grip strength) of 703 male and female elite young athletes aged 8-18 years were collected to aggregate reference values according to maturation, age, and sex. Findings indicate that body height and mass were significantly higher (p<0.001; 0.95≤d≤1.74) in more compared to less mature young athletes as well as with increasing chronological age (p<0.05; 0.66≤d≤3.13). Furthermore, male young athletes were significantly taller and heavier compared to their female counterparts (p<0.001; 0.34≤d≤0.50). In terms of physical fitness, post-pubertal athletes showed better countermovement jump, drop jump, change-of-direction, and handgrip strength performances (p<0.001; 1.57≤d≤8.72) compared to pubertal athletes. Further, countermovement jump, drop jump, change-of-direction, and handgrip strength performances increased with increasing chronological age (p<0.05; 0.29≤d≤4.13). In addition, male athletes outperformed their female counterpart in the countermovement jump, drop jump, change-of-direction, and handgrip strength (p<0.05; 0.17≤d≤0.76). Significant age by sex interactions indicate that sex-specific differences were even more pronounced with increasing age. Conclusively, body height, body mass, and physical fitness increased with increasing maturational status and chronological age. Sex-specific differences appear to be larger as youth grow older. Practitioners can use the percentile values as approximate benchmarks for talent identification and development.}, language = {en} } @misc{ThielePrieskeLesinskietal.2020, author = {Thiele, Dirk and Prieske, Olaf and Lesinski, Melanie and Granacher, Urs}, title = {Effects of Equal Volume Heavy-Resistance Strength Training Versus Strength Endurance Training on Physical Fitness and Sport-Specific Performance in Young Elite Female Rowers}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {664}, issn = {1866-8364}, doi = {10.25932/publishup-48196}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-481961}, pages = {14}, year = {2020}, abstract = {Strength training is an important means for performance development in young rowers. The purpose of this study was to examine the effects of a 9-week equal volume heavy-resistance strength training (HRST) versus strength endurance training (SET) in addition to regular rowing training on primary (e.g., maximal strength/power) and secondary outcomes (e.g., balance) in young rowers. Twenty-six female elite adolescent rowers were assigned to an HRST (n = 12; age: 13.2 ± 0.5 yrs; maturity-offset: +2.0 ± 0.5 yrs) or a SET group (n = 14; age: 13.1 ± 0.5 yrs; maturity-offset: +2.1 ± 0.5 yrs). HRST and SET comprised lower- (i.e., leg press/knee flexion/extension), upper-limbs (i.e., bench press/pull; lat-pull down), and complex exercises (i.e., rowing ergometer). HRST performed four sets with 12 repetitions per set at an intensity of 75-95\% of the one-repetition maximum (1-RM). SET conducted four sets with 30 repetitions per set at 50-60\% of the 1-RM. Training volume was matched for overall repetitions × intensity × training per week. Pre-post training, tests were performed for the assessment of primary [i.e., maximal strength (e.g., bench pull/knee flexion/extension 1-RM/isometric handgrip test), muscle power (e.g., medicine-ball push test, triple hop, drop jump, and countermovement jump), anaerobic endurance (400-m run), sport-specific performance (700-m rowing ergometer trial)] and secondary outcomes [dynamic balance (Y-balance test), change-of-direction (CoD) speed (multistage shuttle-run test)]. Adherence rate was >87\% and one athlete of each group dropped out. Overall, 24 athletes completed the study and no test or training-related injuries occurred. Significant group × time interactions were observed for maximal strength, muscle power, anaerobic endurance, CoD speed, and sport-specific performance (p ≤ 0.05; 0.45 ≤ d ≤ 1.11). Post hoc analyses indicated larger gains in maximal strength and muscle power following HRST (p ≤ 0.05; 1.81 ≤ d ≤ 3.58) compared with SET (p ≤ 0.05; 1.04 ≤ d ≤ 2.30). Furthermore, SET (p ≤ 0.01; d = 2.08) resulted in larger gains in sport-specific performance compared with HRST (p < 0.05; d = 1.3). Only HRST produced significant pre-post improvements for anaerobic endurance and CoD speed (p ≤ 0.05; 1.84 ≤ d ≤ 4.76). In conclusion, HRST in addition to regular rowing training was more effective than SET to improve selected measures of physical fitness (i.e., maximal strength, muscle power, anaerobic endurance, and CoD speed) and SET was more effective than HRST to enhance sport-specific performance gains in female elite young rowers.}, language = {en} }