@article{Lewandowski2022, author = {Lewandowski, Max}, title = {Hadamard states for bosonic quantum field theory on globally hyperbolic spacetimes}, series = {Journal of mathematical physics}, volume = {63}, journal = {Journal of mathematical physics}, number = {1}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0022-2488}, doi = {10.1063/5.0055753}, pages = {34}, year = {2022}, abstract = {According to Radzikowski's celebrated results, bisolutions of a wave operator on a globally hyperbolic spacetime are of the Hadamard form iff they are given by a linear combination of distinguished parametrices i2(G˜aF-G˜F+G˜A-G˜R) in the sense of Duistermaat and H{\"o}rmander [Acta Math. 128, 183-269 (1972)] and Radzikowski [Commun. Math. Phys. 179, 529 (1996)]. Inspired by the construction of the corresponding advanced and retarded Green operator GA, GR as done by B{\"a}r, Ginoux, and Pf{\"a}ffle {Wave Equations on Lorentzian Manifolds and Quantization [European Mathematical Society (EMS), Z{\"u}rich, 2007]}, we construct the remaining two Green operators GF, GaF locally in terms of Hadamard series. Afterward, we provide the global construction of i2(G˜aF-G˜F), which relies on new techniques such as a well-posed Cauchy problem for bisolutions and a patching argument using Čech cohomology. This leads to global bisolutions of the Hadamard form, each of which can be chosen to be a Hadamard two-point-function, i.e., the smooth part can be adapted such that, additionally, the symmetry and the positivity condition are exactly satisfied.}, language = {en} }