@article{BergnerStreckerTrauthetal.2009, author = {Bergner, Andreas G. N. and Strecker, Manfred and Trauth, Martin H. and Deino, Alan L. and Gasse, Francoise and Blisniuk, Peter Michael and Duehnforth, Miriam}, title = {Tectonic and climatic control on evolution of rift lakes in the Central Kenya Rift, East Africa}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2009.07.008}, year = {2009}, abstract = {The long-term histories of the neighboring Nakuru-Elmenteita and Naivasha lake basins in the Central Kenya Rift illustrate the relative importance of tectonic versus climatic effects on rift-lake evolution and the formation of disparate sedimentary environments. Although modem climate conditions in the Central Kenya Rift are very similar for these basins, hydrology and hydrochemistry of present-day lakes Nakuru, Elmenteita and Naivasha contrast dramatically due to tectonically controlled differences in basin geometries, catchment size, and fluvial processes. In this study, we use eighteen C-14 and Ar-40/Ar-39 dated fluvio-lacustrine sedimentary sections to unravel the spatiotemporal evolution of the lake basins in response to tectonic and climatic influences. We reconstruct paleoclimatic and ecological trends recorded in these basins based on fossil diatom assemblages and geologic field mapping. Our study shows a tendency towards increasing alkalinity and shrinkage of water bodies in both lake basins during the last million years. Ongoing volcano-tectonic segmentation of the lake basins, as well as reorganization of upstream drainage networks have led to contrasting hydrologic regimes with adjacent alkaline and freshwater conditions. During extreme wet periods in the past, such as during the early Holocene climate optimum, lake levels were high and all basins evolved toward freshwater systems. During drier periods some of these lakes revert back to alkaline conditions, while others maintain freshwater characteristics. Our results have important implications for the use and interpretation of lake sediment as climate archives in tectonically active regions and emphasize the need to deconvolve lacustrine records with respect to tectonics versus climatic forcing mechanisms.}, language = {en} } @article{MantzoukiCampbellvanLoonetal.2018, author = {Mantzouki, Evanthia and Campbell, James and van Loon, Emiel and Visser, Petra and Konstantinou, Iosif and Antoniou, Maria and Giuliani, Gregory and Machado-Vieira, Danielle and de Oliveira, Alinne Gurjao and Maronic, Dubravka Spoljaric and Stevic, Filip and Pfeiffer, Tanja Zuna and Vucelic, Itana Bokan and Zutinic, Petar and Udovic, Marija Gligora and Plenkovic-Moraj, Andelka and Tsiarta, Nikoletta and Blaha, Ludek and Geris, Rodan and Frankova, Marketa and Christoffersen, Kirsten Seestern and Warming, Trine Perlt and Feldmann, Tonu and Laas, Alo and Panksep, Kristel and Tuvikene, Lea and Kangro, Kersti and Haggqvist, Kerstin and Salmi, Pauliina and Arvola, Lauri and Fastner, Jutta and Straile, Dietmar and Rothhaupt, Karl-Otto and Fonvielle, Jeremy Andre and Grossart, Hans-Peter and Avagianos, Christos and Kaloudis, Triantafyllos and Triantis, Theodoros and Zervou, Sevasti-Kiriaki and Hiskia, Anastasia and Gkelis, Spyros and Panou, Manthos and McCarthy, Valerie and Perello, Victor C. and Obertegger, Ulrike and Boscaini, Adriano and Flaim, Giovanna and Salmaso, Nico and Cerasino, Leonardo and Koreiviene, Judita and Karosiene, Jurate and Kasperoviciene, Jurate and Savadova, Ksenija and Vitonyte, Irma and Haande, Sigrid and Skjelbred, Birger and Grabowska, Magdalena and Karpowicz, Maciej and Chmura, Damian and Nawrocka, Lidia and Kobos, Justyna and Mazur-Marzec, Hanna and Alcaraz-Parraga, Pablo and Wilk-Wozniak, Elzbieta and Krzton, Wojciech and Walusiak, Edward and Gagala, Ilona and Mankiewicz-Boczek, Joana and Toporowska, Magdalena and Pawlik-Skowronska, Barbara and Niedzwiecki, Michal and Peczula, Wojciech and Napiorkowska-Krzebietke, Agnieszka and Dunalska, Julita and Sienska, Justyna and Szymanski, Daniel and Kruk, Marek and Budzynska, Agnieszka and Goldyn, Ryszard and Kozak, Anna and Rosinska, Joanna and Szelag-Wasielewska, Elzbieta and Domek, Piotr and Jakubowska-Krepska, Natalia and Kwasizur, Kinga and Messyasz, Beata and Pelechata, Aleksandra and Pelechaty, Mariusz and Kokocinski, Mikolaj and Madrecka, Beata and Kostrzewska-Szlakowska, Iwona and Frak, Magdalena and Bankowska-Sobczak, Agnieszka and Wasilewicz, Michal and Ochocka, Agnieszka and Pasztaleniec, Agnieszka and Jasser, Iwona and Antao-Geraldes, Ana M. and Leira, Manel and Hernandez, Armand and Vasconcelos, Vitor and Morais, Joao and Vale, Micaela and Raposeiro, Pedro M. and Goncalves, Vitor and Aleksovski, Boris and Krstic, Svetislav and Nemova, Hana and Drastichova, Iveta and Chomova, Lucia and Remec-Rekar, Spela and Elersek, Tina and Delgado-Martin, Jordi and Garcia, David and Luis Cereijo, Jose and Goma, Joan and Carmen Trapote, Mari and Vegas-Vilarrubia, Teresa and Obrador, Biel and Garcia-Murcia, Ana and Real, Monserrat and Romans, Elvira and Noguero-Ribes, Jordi and Parreno Duque, David and Fernandez-Moran, Elisabeth and Ubeda, Barbara and Angel Galvez, Jose and Marce, Rafael and Catalan, Nuria and Perez-Martinez, Carmen and Ramos-Rodriguez, Eloisa and Cillero-Castro, Carmen and Moreno-Ostos, Enrique and Maria Blanco, Jose and Rodriguez, Valeriano and Juan Montes-Perez, Jorge and Palomino, Roberto L. and Rodriguez-Perez, Estela and Carballeira, Rafael and Camacho, Antonio and Picazo, Antonio and Rochera, Carlos and Santamans, Anna C. and Ferriol, Carmen and Romo, Susana and Soria, Juan Miguel and Hansson, Lars-Anders and Urrutia-Cordero, Pablo and Ozen, Arda and Bravo, Andrea G. and Buck, Moritz and Colom-Montero, William and Mustonen, Kristiina and Pierson, Don and Yang, Yang and Verspagen, Jolanda M. H. and Domis, Lisette N. de Senerpont and Seelen, Laura and Teurlincx, Sven and Verstijnen, Yvon and Lurling, Miquel and Maliaka, Valentini and Faassen, Elisabeth J. and Latour, Delphine and Carey, Cayelan C. and Paerl, Hans W. and Torokne, Andrea and Karan, Tunay and Demir, Nilsun and Beklioglu, Meryem and Filiz, Nur and Levi, Eti E. and Iskin, Ugur and Bezirci, Gizem and Tavsanoglu, Ulku Nihan and Celik, Kemal and Ozhan, Koray and Karakaya, Nusret and Kocer, Mehmet Ali Turan and Yilmaz, Mete and Maraslioglu, Faruk and Fakioglu, Ozden and Soylu, Elif Neyran and Yagci, Meral Apaydin and Cinar, Sakir and Capkin, Kadir and Yagci, Abdulkadir and Cesur, Mehmet and Bilgin, Fuat and Bulut, Cafer and Uysal, Rahmi and Koker, Latife and Akcaalan, Reyhan and Albay, Meric and Alp, Mehmet Tahir and Ozkan, Korhan and Sevindik, Tugba Ongun and Tunca, Hatice and Onem, Burcin and Richardson, Jessica and Edwards, Christine and Bergkemper, Victoria and Beirne, Eilish and Cromie, Hannah and Ibelings, Bastiaan W.}, title = {Data Descriptor: A European Multi Lake Survey dataset of environmental variables, phytoplankton pigments and cyanotoxins}, series = {Scientific Data}, volume = {5}, journal = {Scientific Data}, publisher = {Nature Publ. Group}, address = {London}, issn = {2052-4463}, doi = {10.1038/sdata.2018.226}, pages = {13}, year = {2018}, abstract = {Under ongoing climate change and increasing anthropogenic activity, which continuously challenge ecosystem resilience, an in-depth understanding of ecological processes is urgently needed. Lakes, as providers of numerous ecosystem services, face multiple stressors that threaten their functioning. Harmful cyanobacterial blooms are a persistent problem resulting from nutrient pollution and climate-change induced stressors, like poor transparency, increased water temperature and enhanced stratification. Consistency in data collection and analysis methods is necessary to achieve fully comparable datasets and for statistical validity, avoiding issues linked to disparate data sources. The European Multi Lake Survey (EMLS) in summer 2015 was an initiative among scientists from 27 countries to collect and analyse lake physical, chemical and biological variables in a fully standardized manner. This database includes in-situ lake variables along with nutrient, pigment and cyanotoxin data of 369 lakes in Europe, which were centrally analysed in dedicated laboratories. Publishing the EMLS methods and dataset might inspire similar initiatives to study across large geographic areas that will contribute to better understanding lake responses in a changing environment.}, language = {en} }