@article{JumaAkalaEyaseetal.2011, author = {Juma, Wanyama P. and Akala, Hoseah M. and Eyase, Fredrick L. and Muiva, Lois M. and Heydenreich, Matthias and Okalebo, Faith A. and Gitu, Peter M. and Peter, Martin G. and Walsh, Douglas S. and Imbuga, Mabel and Yenesew, Abiy}, title = {Terpurinflavone an antiplasmodial flavone from the stem of Tephrosia Purpurea}, series = {Phytochemistry letters}, volume = {4}, journal = {Phytochemistry letters}, number = {2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2011.02.010}, pages = {176 -- 178}, year = {2011}, abstract = {The stem extract of Tephrosia purpurea showed antiplasmodial activity against the D6 (chloroquine-sensitive) and W2 (chloroquine-resistant) strains of Plasmodium falciparum with IC(50) values of 10.47 +/- 2.22 mu g/ml and 12.06 +/- 2.54 mu g/ml, respectively. A new prenylated flavone, named terpurinflavone, along with the known compounds lanceolatin A, (-)-semiglabrin and lanceolatin B have been isolated from this extract. The new compound, terpurinflavone, showed the highest antiplasmodial activity with IC(50) values of 3.12 +/- 0.28 mu M (D6) and 6.26 +/- 2.66 mu M (W2). The structures were determined on the basis of spectroscopic evidence.}, language = {en} } @article{YenesewTwinomuhweziKiremireetal.2009, author = {Yenesew, Abiy and Twinomuhwezi, Hannington and Kiremire, Bernard T. and Mbugua, Martin N. and Gitu, Peter M. and Heydenreich, Matthias and Peter, Martin G.}, title = {8-Methoxyneorautenol and radical scavenging flavonoids from Erythrina abyssinica}, issn = {1011-3924}, year = {2009}, abstract = {A new pterocarpan (named 8-methoxyneorautenol) was isolated from the acetone ext. of the root bark of Erythrina abyssinica. In addn., the known isoflavonoid derivs. eryvarin L, erycristagallin and shinpterocarpin were identified for the first time from the roots of this plant. The structures were detd. on the basis of spectroscopic evidence. The new compd. showed selective antimicrobial activity against Trichophyton mentagrophytes. The acetone ext. of the root bark of E. abyssinica showed radical scavenging activity towards 2,2-diphenyl-1-picrylhydrazyl radical (DPPH). The pterocarpenes, 3-hydroxy-9-methoxy-10-(3,3-dimethylallyl)pterocarpene and erycristagallin, were the most active constituents of the roots of this plant and showing dose-dependent activities similar to that of the std. quercetin. [on SciFinder (R)]}, language = {en} } @misc{PeterYenesewTwinomuhwezietal.2009, author = {Peter, Martin G. and Yenesew, Abiy and Twinomuhwezi, Hannington and Kabaru, Jacques M. and Akala, Hoseah M. and Kiremire, Bernard T. and Heydenreich, Matthias and Eyase, Fredrick and Waters, Norman C. and Walsh, Douglas S.}, title = {Antiplasmodial and larvicidal flavonoids from Derris trifoliata}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44614}, year = {2009}, abstract = {From the dichloromethane-methanol (1:1) extract of the seed pods of Derris trifoliata, a new flavanone derivative (S)-lupinifolin 4´-methyl ether was isolated. In addition, the known flavonoids lupinifolin and rotenone were identified. The structures were determined on the basis of spectroscopic evidence. Lupinfolin showed moderate in vitro antiplasmodial activity against the D6 (chloroquine-sensitive) and W2 (chloroquineresistant) strains of Plasmodium falciparum. The different parts of this plant showed larvicidal activities against Aedes aegypti and rotenoids were identified as the active principles.}, language = {en} } @misc{PeterMuivaYenesewetal.2009, author = {Peter, Martin G. and Muiva, Lois M. and Yenesew, Abiy and Derese, Solomon and Heydenreich, Matthias and Akala, Hoseah M. and Eyase, Fredrick and Waters, Norman C. and Mutai, Charles and Keriko, Joseph M. and Walsh, Douglas S.}, title = {Antiplasmodial β-hydroxydihydrochalcone from seedpods of Tephrosia elata}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-44437}, year = {2009}, abstract = {From the seedpods of Tephrosia elata, a new β-hydroxydihydrochalcone named (S)-elatadihydrochalcone was isolated. In addition, the known flavonoids obovatachalcone, obovatin, obovatin methyl ether and deguelin were identified. The structures were determined on the basis of spectroscopic evidence. The crude extract and the flavonoids obtained from the seedpods of this plant showed antiplasmodial activities. The literature NMR data on β-hydroxydihydrochalcones is reviewed and the identity of some of the compounds assigned β-hydroxydihydrochalcone skeleton is questioned.}, language = {en} } @misc{BringmannMutanyattaComarMaksimenkaetal.2008, author = {Bringmann, Gerhard and Mutanyatta-Comar, Joan and Maksimenka, Katja and Wanjohi, John M. and Heydenreich, Matthias and Brun, Reto and M{\"u}ller, Werner E. G. and Peter, Martin and Midiwo, Jacob O. and Yenesew, Abiy}, title = {Joziknipholones A and B : the First Dimeric Phenylanthraquinones, from the Roots of Bulbine frutescens}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-42638}, year = {2008}, abstract = {From the roots of the African plant Bulbine frutescens (Asphodelaceae), two unprecedented novel dimeric phenylanthraquinones, named joziknipholones A and B, possessing axial and centrochirality, were isolated, together with six known compounds. Structural elucidation of the new metabolites was achieved by spectroscopic and chiroptical methods, by reductive cleavage of the central bond between the monomeric phenylanthraquinone and -anthrone portions with sodium dithionite, and by quantum chemical CD calculations. Based on the recently revised absolute axial configuration of the parent phenylanthraquinones, knipholone and knipholone anthrone, the new dimers were attributed to possess the P-configuration (i.e., with the acetyl portions below the anthraquinone plane) at both axes in the case of joziknipholone A, whereas in joziknipholone B, the knipholone part was found to be M-configured. Joziknipholones A and B are active against the chloroquine resistant strain K1 of the malaria pathogen, Plasmodium falciparum, and show moderate activity against murine leukemic lymphoma L5178y cells.}, language = {en} } @article{BringmannMutanyattaComarMaksimenkaetal.2008, author = {Bringmann, Gerhard and Mutanyatta-Comar, Joan and Maksimenka, Katja and Wanjohi, John M. and Heydenreich, Matthias and Brun, Reto and M{\"u}ller, Werner E. G. and Peter, Martin G. and Midiwo, Jacob O. and Yenesew, Abiy}, title = {Joziknipholones A and B : the first dimeric phenylanthraquinones, from the roots of Bulbine frutescens}, issn = {0947-6539}, year = {2008}, abstract = {From the roots of the African plant Bulbine frutescens (Asphodelaceae), two unprecedented novel dimeric phenylanthraquinones, named joziknipholones A and B, possessing axial and centrochirality, were isolated, together with six known compounds. Structural elucidation of the new metabolites was achieved by spectroscopic and chiroptical methods, by reductive cleavage of the central bond between the monomeric phenylanthraquinone and -anthrone portions with sodium dithionite, and by quantum chemical CD calculations. Based on the recently revised absolute axial configuration of the parent phenylanthraquinones, knipholone and knipholone anthrone, the new dimers were attributed to possess the P- configuration (i.e., with the acetyl portions below the anthraquinone plane) at both axes in the case of joziknipholone A, whereas in joziknipholone B, the knipholone part was found to be M-configured. Joziknipholones A and B are active against the chloroquine resistant strain K1 of the malaria pathogen, Plasmodium falciparum, and show moderate activity against murine leukemic lymphoma L5178y cells.}, language = {en} } @article{YenesewKiplagatDereseetal.2006, author = {Yenesew, Abiy and Kiplagat, John T. and Derese, Solomon and Midiwo, Jacob O. and Kabaru, Jacques M. and Heydenreich, Matthias and Peter, Martin G.}, title = {Two unusual rotenoid derivatives, 7a-O-methyl-12a-hydroxydeguelol and spiro-13-homo-13-oxaelliptone, from the seeds of Derris trifoliata}, doi = {10.1016/j.phytochem.2006.01.002}, year = {2006}, abstract = {The crude methanol extract of the seeds of Derris trifoliata showed potent and dose dependent larvicidal activity against the 2nd instar larvae of Aedes aegypti. From this extract two unusual rotenoid derivatives, a rotenoloid (named 7a-O-methyl-12a-hydroxydeguelol) and a spirohomooxarotenoid (named spiro-13-homo-13-oxaelliptone), were isolated and characterised. In addition a rare natural chromanone (6,7-dimethoxy-4-chromanone) and the known rotenoids rotenone, tephrosin and dehydrodeguelin were identified. The structures were assigned on the basis of spectroscopic evidence. The larvicidal activity of the crude extract is mainly due to rotenone. (c) 2006 Elsevier Ltd. All rights reserved}, language = {en} } @article{AndayiYenesewDereseetal.2006, author = {Andayi, Andrew W. and Yenesew, Abiy and Derese, Solomon and Midiwo, Jacob O. and Gitu, Peter M. and Jondiko, Ogoche J. I. and Akala, Hoseah M. and Liyala, Pamela and Wangui, Julia and Waters, Norman C. and Heydenreich, Matthias and Peter, Martin G.}, title = {Antiplasmodial flavonoids from Erythrina sacleuxii}, issn = {0032-0943}, doi = {10.1055/s-2005-873200}, year = {2006}, abstract = {The acetone extracts of the root bark and stem bark of Erythrina sacleuxii showed antiplasmodial activities against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) strains of Plasmodium falciparum. Chromatographic separation of the acetone extract of the root bark afforded a new isoflavone, 7-hydroxy-4 -methoxy-3'- prenylisoflavone (trivial name 5-deoxy-3' - prenylbiochanin A) along with known isoflavonoids as the antiplasmodial principles. Flavonoids and isoflavonoids isolated from the stem bark of E. sucleuxii were also tested and showed antiplasmodial activities. The structures were determined on the basis of spectroscopic evidence}, language = {en} } @article{WanjohiYenesewMidiwoetal.2005, author = {Wanjohi, John M. and Yenesew, Abiy and Midiwo, Jacob O. and Heydenreich, Matthias and Peter, Martin G. and Dreyer, M. and Reichert, M. and Bringmann, Gerhard}, title = {Three dimeric anthracene derivatives from the fruits of Bulbine abyssinica}, issn = {0040-4020}, year = {2005}, abstract = {From the fruits of Bulbine abyssinica three new dimeric anthracene derivatives, (P)-8,9,1',8'- tetrahydroxy-3,3'-dimethyl[10,7'-bianthracene]-1,4,9',10'- tetraone (trivial name abyquinone A), (10R)-1,4,8,1',8-pentahydroxy-3,3'-dimethyl-[10,7'-bianthracene]9,9',10' (10H)-trione (trivial name abyquinone B), and (10R)-3,4'-dihydro-1,4,8,3',8',9'-hexahydroxy-3,3'- dimethyl-[10,7'-biant hracene]9,1'(10H,2'H)-dione (trivial name abyquinone Q were isolated. Despite their structural differences, these three compounds are connected to each other by the apparently biomimetic conversion of abyquinone C (a preanthraquinonylanthrone with two stereogenic centers) into B (an anthraquinonylanthrone with one stereogenic center) and finally into A (an axially chiral bianthraquinone) under mild conditions, involving a highly efficient center-to-axis chirality transfer. In addition, the known anthraquinones islandicin and chrysophanol were identified. The structures were determined on the basis of spectroscopical evidences, chemical transformations, and quantum chemical CD calculations. (C) 2005 Elsevier Ltd. All rights reserved}, language = {en} } @article{YenesewMushibeIndulietal.2005, author = {Yenesew, Abiy and Mushibe, E. K. and Induli, M. and Derese, Solomon and Midiwo, Jacob O. and Kabaru, Jacques M. and Heydenreich, Matthias and Koch, Andreas and Peter, Martin G.}, title = {7a-O-methyldeguelol, a modified rotenoid with an open ring-C, from the roots of Derris trifoloata}, issn = {0031-9422}, year = {2005}, abstract = {From the acetone extract of the roots of Derris trifoliata an isollavonoid derivative, named 7a-O- methyldeguelol, a modified rotenoid with an open ring-C, representing a new sub-class of isollavonoids (the sub-class is here named as rotenoloid), was isolated and characterised. In addition, the known rotenoids, rotenone, deguelin and alpha-toxicarol, were identified. The structures were determined on the basis of spectroscopic evidence. Rotenone and deguelin were identified as the larvicidal principles of the acetone extract of the roots of Derris trifoliata. (c) 2005 Elsevier Ltd. All rights reserved}, language = {en} }