@article{ParkKrauseKarnahletal.2018, author = {Park, Misoon and Krause, Cornelia and Karnahl, Matthias and Reichardt, Ilka and El Kasmi, Farid and Mayer, Ulrike and Stierhof, York-Dieter and Hiller, Ulrike and Strompen, Georg and Bayer, Martin and Kientz, Marika and Sato, Masa H. and Nishimura, Marc T. and Dangl, Jeffery L. and Sanderfoot, Anton A. and J{\"u}rgens, Gerd}, title = {Concerted Action of Evolutionarily Ancient and Novel SNARE Complexes in Flowering-Plant Cytokinesis}, series = {Developmental cell}, volume = {44}, journal = {Developmental cell}, number = {4}, publisher = {Cell Press}, address = {Cambridge}, issn = {1534-5807}, doi = {10.1016/j.devcel.2017.12.027}, pages = {500 -- +}, year = {2018}, abstract = {Membrane vesicles delivered to the cell-division plane fuse with one another to form the partitioning membrane during plant cytokinesis, starting in the cell center. In Arabidopsis, this requires SNARE complexes involving the cytokinesis-specific Qa-SNARE KNOLLE. However, cytokinesis still occurs in knolle mutant embryos, suggesting contributions from KNOLLE-independent SNARE complexes. Here we show that Qa-SNARE SYP132, having counterparts in lower plants, functionally overlaps with the flowering plant-specific KNOLLE. SYP132 mutation causes cytokinesis defects, knolle syp132 double mutants consist of only one or a few multi-nucleate cells, and SYP132 has the same SNARE partners as KNOLLE. SYP132 and KNOLLE also have non-overlapping functions in secretion and in cellularization of the embryo-nourishing endosperm resulting from double fertilization unique to flowering plants. Evolutionarily ancient non-specialized SNARE complexes originating in algae were thus amended by the appearance of cytokinesis-specific SNARE complexes, meeting the high demand for membrane-fusion capacity during endosperm cellularization in angiosperms.}, language = {en} } @article{KongDeuberKittilaeetal.2018, author = {Kong, Xiang-Zhao and Deuber, Claudia A. and Kittil{\"a}, Anniina and Somogyv{\´a}ri, M{\´a}rk and Mikutis, Gediminas and Bayer, Peter and Stark, Wendelin J. and Saar, Martin O.}, title = {Tomographic Reservoir Imaging with DNA-Labeled Silica Nanotracers: The First Field Validation}, series = {Environmental science \& technology}, volume = {52}, journal = {Environmental science \& technology}, number = {23}, publisher = {American Chemical Society}, address = {Washington}, issn = {0013-936X}, doi = {10.1021/acs.est.8b04367}, pages = {13681 -- 13689}, year = {2018}, abstract = {This study presents the first field validation of using DNA-labeled silica nanoparticles as tracers to image subsurface reservoirs by travel time based tomography. During a field campaign in Switzerland, we performed short-pulse tracer tests under a forced hydraulic head gradient to conduct a multisource-multireceiver tracer test and tomographic inversion, determining the two-dimensional hydraulic conductivity field between two vertical wells. Together with three traditional solute dye tracers, we injected spherical silica nanotracers, encoded with synthetic DNA molecules, which are protected by a silica layer against damage due to chemicals, microorganisms, and enzymes. Temporal moment analyses of the recorded tracer concentration breakthrough curves (BTCs) indicate higher mass recovery, less mean residence time, and smaller dispersion of the DNA-labeled nanotracers, compared to solute dye tracers. Importantly, travel time based tomography, using nanotracer BTCs, yields a satisfactory hydraulic conductivity tomogram, validated by the dye tracer results and previous field investigations. These advantages of DNA-labeled nanotracers, in comparison to traditional solute dye tracers, make them well-suited for tomographic reservoir characterizations in fields such as hydrogeology, petroleum engineering, and geothermal energy, particularly with respect to resolving preferential flow paths or the heterogeneity of contact surfaces or by enabling source zone characterizations of dense nonaqueous phase liquids.}, language = {en} } @article{DeBiaseMaierBaederBederskietal.2012, author = {De Biase, Cecilia and Maier, Uli and Baeder-Bederski, Oliver and Bayer, Peter and Oswald, Sascha and Thullner, Martin}, title = {Removal of volatile organic compounds in vertical flow filters - predictions from reactive transport modeling}, series = {Ground water monitoring \& remediation}, volume = {32}, journal = {Ground water monitoring \& remediation}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1069-3629}, doi = {10.1111/j.1745-6592.2011.01374.x}, pages = {106 -- 121}, year = {2012}, abstract = {Vertical flow filters are containers filled with porous medium that are recharged from top and drained at the bottom, and are operated at partly saturated conditions. They have recently been suggested as treatment technology for groundwater containing volatile organic compounds (VOCs). Numerical reactive transport simulations were performed to investigate the relevance of different filter operation modes on biodegradation and/or volatilization of the contaminants and to evaluate the potential limitation of such remediation mean due to volatile emissions. On the basis of the data from a pilot-scale vertical flow filter intermittently fed with domestic waste water, model predictions on the systems performance for the treatment of contaminated groundwater were derived. These simulations considered the transport and aerobic degradation of ammonium and two VOCs, benzene and methyl tertiary butyl ether (MTBE). In addition, the advective-diffusive gas-phase transport of volatile compounds as well as oxygen was simulated. Model predictions addressed the influence of depth and frequency of the intermittent groundwater injection, degradation rate kinetics, and the composition of the filter material. Simulation results show that for unfavorable operation conditions significant VOC emissions have to be considered and that operation modes limiting VOC emissions may limit aerobic biodegradation. However, a suitable combination of injection depth and composition of the filter material does facilitate high biodegradation rates while only little VOC emissions take place. Using such optimized operation modes would allow using vertical flow filter systems as remediation technology suitable for groundwater contaminated with volatile compounds.}, language = {en} } @inproceedings{EsveldVriesBecchettietal.2023, author = {Esveld, Selma van and Vries, Nardo de and Becchetti, Sibilla and Dopper, Sofia and Valkenburg, Willem van and Carlon, May Kristine Jonson and Yokoi, Kensuke and Gayed, John Maurice and Suyama, Hiroshi and Cross, Jeffrey Scott and Jin, Tonje and Xue, Wei and Bruillard, {\´E}ric and Steinbeck, Hendrik and Meinel, Christoph and {\"O}zdemir, Paker Doğu and Can Bayer, Burak and Mercan, Duygu and Buyurucu, Gamze and Haugsbakken, Halvdan and Hagelia, Marianne and Ebner, Martin and Edelsbrunner, Sarah and Hohla-Sejkora, Katharina and Lipp, Silvia and Sch{\"o}n, Sandra and Xiaoxiao, Wang and Shuangshuang, Guo and Morales-Chan, Miguel and Amado-Salvatierra, H{\´e}ctor R. and Hern{\´a}ndez-Rizzardini, Rocael and Egloffstein, Marc and H{\"u}nemohr, Holger and Ifenthaler, Dirk and Dixon, Fred and Trabucchi, Stefania and Khaneboubi, Mehdi and Giannatelli, Ada and Tomasini, Alessandra and Staubitz, Thomas and Serth, Sebastian and Thomas, Max and Koschutnig-Ebner, Markus and Rampelt, Florian and Stetten, Alexander von and Wittke, Andreas and Theeraroungchaisri, Anuchai and Thammetar, Thapanee and Duangchinda, Vorasuang and Khlaisang, Jintavee and Mair, Bettina and Steinkellner, Iris and Stojcevic, Ivana and Zwiauer, Charlotte and Thirouard, Maria and Vill{\`e}sbrunne, Marie de la and Bernaert, Oliver and Nohr, Magnus and Alario Hoyos, Carlos and Delgado Kloos, Carlos and Kiendl, Doris and Terzieva, Liliya and Concia, Francesca and Distler, Petr and Law, Gareth and Macerata, Elena and Mariani, Mario and Mossini, Eros and Negrin, Maddalena and Štrok, Marko and Neub{\"o}ck, Kristina and Linschinger, Nadine and Lorenz, Anja and Bock, Stefanie and Schulte-Ostermann, Juleka and Moura Santos, Ana and Corti, Paola and Costa, Luis Felipe Coimbra and Utunen, Heini and Attias, Melissa and Tokar, Anna and Kennedy, Eileen and Laurillard, Diana and Zeitoun, Samar and Wasilewski, Julie and Shlaka, Souhad and Ouahib, Sara and Berrada, Khalid and Dietz, Michael and Roth, Dennis}, title = {EMOOCs 2023}, editor = {Meinel, Christoph and Schweiger, Stefanie and Staubitz, Thomas and Conrad, Robert and Alario Hoyos, Carlos and Ebner, Martin and Sancassani, Susanna and Żur, Agnieszka and Friedl, Christian and Halawa, Sherif and Gamage, Dilrukshi and Cross, Jeffrey and Jonson Carlon, May Kristine and Deville, Yves and Gaebel, Michael and Delgado Kloos, Carlos and von Schmieden, Karen}, doi = {10.25932/publishup-57645}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576450}, year = {2023}, abstract = {From June 14 to June 16, 2023, Hasso Plattner Institute, Potsdam, hosted the eighth European MOOC Stakeholder Summit (EMOOCs 2023). The pandemic is fortunately over. It has once again shown how important digital education is. How well-prepared a country was could be seen in our schools, universities, and companies. In different countries, the problems manifested themselves differently. The measures and approaches to solving the problems varied accordingly. Digital education, whether micro-credentials, MOOCs, blended learning formats, or other e-learning tools, received a major boost. EMOOCs 2023 focusses on the effects of this emergency situation. How has it affected the development and delivery of MOOCs and other e-learning offerings all over Europe? Which projects can serve as models for successful digital learning and teaching? Which roles can MOOCs and micro-credentials bear in the current business transformation? Is there a backlash to the routine we knew from pre-Corona times? Or have many things become firmly established in the meantime, e.g. remote work, hybrid conferences, etc.? Furthermore, EMOOCs 2023 has a closer look at the development and formalization of digital learning. Micro-credentials are just the starting point. Further steps in this direction would be complete online study programs or full online universities. Another main topic is the networking of learning offers and the standardization of formats and metadata. Examples of fruitful cooperations are the MOOChub, the European MOOC Consortium, and the Common Micro-Credential Framework. The learnings, derived from practical experience and research, are explored in EMOOCs 2023 in four tracks and additional workshops, covering various aspects of this field. In this publication, we present papers from the conference's Research \& Experience Track, the Business Track and the International Track.}, language = {en} }