@article{BaumgartnerLesevicKumarietal.2012, author = {Baumgartner, Jens and Lesevic, Paul and Kumari, Monika and Halbmair, Karin and Bennet, Mathieu and Koernig, Andre and Widdrat, Marc and Andert, Janet and Wollgarten, Markus and Bertinetti, Luca and Strauch, Peter and Hirt, Ann and Faivre, Damien}, title = {From magnetotactic bacteria to hollow spirilla-shaped silica containing a magnetic chain}, series = {RSC Advances}, volume = {2}, journal = {RSC Advances}, number = {21}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {2046-2069}, doi = {10.1039/c2ra20911j}, pages = {8007 -- 8009}, year = {2012}, abstract = {Magnetotactic bacteria produce chains of magnetite nanoparticles, which are called magnetosomes and are used for navigational purposes. We use these cells as a biological template to prepare a hollow hybrid material based on silica and magnetite, and show that the synthetic route is nondestructive as the material conserves the cell morphology as well as the alignment of the magnetic particles. The hybrid material can be resuspended in aqueous solution, and can be shown to orient itself in an external magnetic field. We anticipate that chemical modification of the silica can be used to functionalize the material surface in order to obtain multifunctional materials with specialized applications, e.g. targeted drug delivery.}, language = {en} } @article{GuietUnmuessigGoebeletal.2016, author = {Guiet, Amandine and Unm{\"u}ssig, Tobias and G{\"o}bel, Caren and Vainio, Ulla and Wollgarten, Markus and Driess, Matthias and Schlaad, Helmut and Polte, J{\"o}rg and Fischer, Anna}, title = {Yolk@Shell Nanoarchitectures with Bimetallic Nanocores - Synthesis and Electrocatalytic Applications}, series = {Earth \& planetary science letters}, volume = {8}, journal = {Earth \& planetary science letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.6b06595}, pages = {28019 -- 28029}, year = {2016}, language = {en} } @article{LomadzeKopyshevBargheeretal.2017, author = {Lomadze, Nino and Kopyshev, Alexey and Bargheer, Matias and Wollgarten, Markus and Santer, Svetlana}, title = {Mass production of polymer nanowires filled with metal nanoparticles}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-08153-0}, year = {2017}, abstract = {Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.}, language = {en} } @misc{LomadzeKopyshevBargheeretal.2017, author = {Lomadze, Nino and Kopyshev, Alexey and Bargheer, Matias and Wollgarten, Markus and Santer, Svetlana}, title = {Mass production of polymer nanowires filled with metal nanoparticles}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402712}, pages = {10}, year = {2017}, abstract = {Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.}, language = {en} } @article{LomadzeKopyshevBargheeretal.2017, author = {Lomadze, Nino and Kopyshev, Alexey and Bargheer, Matias and Wollgarten, Markus and Santer, Svetlana}, title = {Mass production of polymer nano-wires filled with metal nano-particles}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-017-08153-0}, pages = {3759 -- 3764}, year = {2017}, abstract = {Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro-or macroscale elements is hampered by the lack of structural components that have both, nano-and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.}, language = {en} }