@phdthesis{Quade2018, author = {Quade, Markus}, title = {Symbolic regression for identification, prediction, and control of dynamical systems}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-419790}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 134}, year = {2018}, abstract = {In the present work, we use symbolic regression for automated modeling of dynamical systems. Symbolic regression is a powerful and general method suitable for data-driven identification of mathematical expressions. In particular, the structure and parameters of those expressions are identified simultaneously. We consider two main variants of symbolic regression: sparse regression-based and genetic programming-based symbolic regression. Both are applied to identification, prediction and control of dynamical systems. We introduce a new methodology for the data-driven identification of nonlinear dynamics for systems undergoing abrupt changes. Building on a sparse regression algorithm derived earlier, the model after the change is defined as a minimum update with respect to a reference model of the system identified prior to the change. The technique is successfully exemplified on the chaotic Lorenz system and the van der Pol oscillator. Issues such as computational complexity, robustness against noise and requirements with respect to data volume are investigated. We show how symbolic regression can be used for time series prediction. Again, issues such as robustness against noise and convergence rate are investigated us- ing the harmonic oscillator as a toy problem. In combination with embedding, we demonstrate the prediction of a propagating front in coupled FitzHugh-Nagumo oscillators. Additionally, we show how we can enhance numerical weather predictions to commercially forecast power production of green energy power plants. We employ symbolic regression for synchronization control in coupled van der Pol oscillators. Different coupling topologies are investigated. We address issues such as plausibility and stability of the control laws found. The toolkit has been made open source and is used in turbulence control applications. Genetic programming based symbolic regression is very versatile and can be adapted to many optimization problems. The heuristic-based algorithm allows for cost efficient optimization of complex tasks. We emphasize the ability of symbolic regression to yield white-box models. In contrast to black-box models, such models are accessible and interpretable which allows the usage of established tool chains.}, language = {en} }