@article{StrongScherzCaldwell2021, author = {Strong, Catherine R. C. and Scherz, Mark D. and Caldwell, Michael Wayne}, title = {Deconstructing the Gestalt}, series = {The anatomical record : AR ; advances in integrative anatomy and evolutionary biology ; an official publication of the American Association of Anatomists, AAA}, volume = {304}, journal = {The anatomical record : AR ; advances in integrative anatomy and evolutionary biology ; an official publication of the American Association of Anatomists, AAA}, number = {10}, publisher = {Wiley}, address = {Hoboken}, issn = {1932-8486}, doi = {10.1002/ar.24630}, pages = {2303 -- 2351}, year = {2021}, abstract = {Snakes-a subset of lizards-have traditionally been divided into two major groups based on feeding mechanics: "macrostomy," involving the ingestion of proportionally large prey items; and "microstomy," the lack of this ability. "Microstomy"-considered present in scolecophidian and early-diverging alethinophidian snakes-is generally viewed as a symplesiomorphy shared with non-snake lizards. However, this perspective of "microstomy" as plesiomorphic and morphologically homogenous fails to recognize the complexity of this condition and its evolution across "microstomatan" squamates. To challenge this problematic paradigm, we formalize a new framework for conceptualizing and testing the homology of overall character complexes, or "morphotypes," which underlies our re-assessment of "microstomy." Using micro-computed tomography (micro-CT) scans, we analyze the morphology of the jaws and suspensorium across purported "microstomatan" squamates (scolecophidians, early-diverging alethinophidians, and non-snake lizards) and demonstrate that key components of the jaw complex are not homologous at the level of primary character state identity across these taxa. Therefore, rather than treating "microstomy" as a uniform condition, we instead propose that non-snake lizards, early-diverging alethinophidians, anomalepidids, leptotyphlopids, and typhlopoids each exhibit a unique and nonhomologous jaw morphotype: "minimal-kinesis microstomy," "snout-shifting," "axle-brace maxillary raking," "mandibular raking," and "single-axle maxillary raking," respectively. The lack of synapomorphy among scolecophidians is inconsistent with the notion of scolecophidians representing an ancestral snake condition, and instead reflects a hypothesis of the independent evolution of fossoriality, miniaturization, and "microstomy" in each scolecophidian lineage. We ultimately emphasize that a rigorous approach to comparative anatomy is necessary in constructing evolutionary hypotheses that accurately reflect biological reality.}, language = {en} } @article{RuthsatzScherzVences2021, author = {Ruthsatz, Katharina and Scherz, Mark D. and Vences, Miguel}, title = {Dissecting the tree of life}, series = {Zootaxa : an international journal of zootaxonomy ;}, volume = {5016}, journal = {Zootaxa : an international journal of zootaxonomy ;}, number = {3}, publisher = {Magnolia Press}, address = {Auckland}, issn = {1175-5326}, doi = {10.11646/zootaxa.5016.3.10}, pages = {448 -- 450}, year = {2021}, language = {en} } @article{BelluardoScherzSantosetal.2022, author = {Belluardo, Francesco and Scherz, Mark D. and Santos, Barbara and Andreone, Franco and Antonelli, Alexandre and Glaw, Frank and Munoz-Pajares, A. Jesus and Randrianirina, Jasmin E. and Raselimanana, Achille P. and Vences, Miguel and Crottini, Angelica}, title = {Molecular taxonomic identification and species-level phylogeny of the narrow-mouthed frogs of the genus Rhombophryne (Anura: Microhylidae: Cophylinae) from Madagascar}, series = {Systematics and biodiversity}, volume = {20}, journal = {Systematics and biodiversity}, number = {1}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1477-2000}, doi = {10.1080/14772000.2022.2039320}, pages = {1 -- 13}, year = {2022}, abstract = {The study of diamond frogs (genus Rhombophryne, endemic to Madagascar) has been historically hampered by the paucity of available specimens, because of their low detectability in the field. Over the last 10 years, 13 new taxa have been described, and 20 named species are currently recognized. Nevertheless, undescribed diversity within the genus is probably large, calling for a revision of the taxonomic identification of published records and an update of the known distribution of each lineage. Here we generate DNA sequences of the mitochondrial 16S rRNA gene of all specimens available to us, revise the genetic data from public databases, and report all deeply divergent mitochondrial lineages of Rhombophryne identifiable from these data. We also generate a multi-locus dataset (including five mitochondrial and eight nuclear markers; 9844 bp) to infer a species-level phylogenetic hypothesis for the diversification of this genus and revise the distribution of each lineage. We recognize a total of 10 candidate species, two of which are identified here for the first time. The genus Rhombophryne is here proposed to be divided into six main species groups, and phylogenetic relationships among some of them are not fully resolved. These frogs are primarily distributed in northern Madagascar, and most species are known from only few localities. A previous record of this genus from the Tsingy de Bemaraha (western Madagascar) is interpreted as probably due to a mislabelling and should not be considered further unless confirmed by new data. By generating this phylogenetic hypothesis and providing an updated distribution of each lineage, our findings will facilitate future species descriptions, pave the way for evolutionary studies, and provide valuable information for the urgent conservation of diamond frogs.}, language = {en} } @article{GorinScherzKorostetal.2021, author = {Gorin, Vladislav A. and Scherz, Mark D. and Korost, Dmitry V. and Poyarkov, Nikolay A.}, title = {Consequences of parallel miniaturisation in Microhylinae (Anura, Microhylidae), with the description of a new genus of diminutive South East Asian frogs}, series = {Zoosystematics and evolution : Mitteilungen aus dem Museum f{\"u}r Naturkunde in Berlin}, volume = {97}, journal = {Zoosystematics and evolution : Mitteilungen aus dem Museum f{\"u}r Naturkunde in Berlin}, number = {1}, publisher = {Pensoft Publishers}, address = {Sofia}, issn = {1860-0743}, doi = {10.3897/zse.97.57968}, pages = {21 -- 54}, year = {2021}, abstract = {The genus Microhyla Tschudi, 1838 includes 52 species and is one of the most diverse genera of the family Microhylidae, being the most species-rich taxon of the Asian subfamily Microhylinae. The recent, rapid description of numerous new species of Microhyla with complex phylogenetic relationships has made the taxonomy of the group especially challenging. Several recent phylogenetic studies suggested paraphyly of Microhyla with respect to Glyphoglossus Gunther, 1869, and revealed three major phylogenetic lineages of mid-Eocene origin within this assemblage. However, comprehensive works assessing morphological variation among and within these lineages are absent. In the present study we investigate the generic taxonomy of Microhyla-Glyphoglossus assemblage based on a new phylogeny including 57 species, comparative morphological analysis of skeletons from cleared-and-stained specimens for 23 species, and detailed descriptions of generalized osteology based on volume-rendered micro-CT scans for five speciesal-together representing all major lineages within the group. The results confirm three highly divergent and well-supported clades that correspond with external and osteological morphological characteristics, as well as respective geographic distribution. Accordingly, acknowledging ancient divergence between these lineages and their significant morphological differentiation, we propose to consider these three lineages as distinct genera: Microhyla sensu stricto, Glyphoglossus, and a newly described genus, Nanohyla gen. nov.}, language = {en} }