@phdthesis{Sempf2005, author = {Sempf, Mario}, title = {Nichtlineare Dynamik atmosph{\"a}rischer Zirkulationsregime in einem idealisierten Modell}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5989}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Unter atmosph{\"a}rischen Zirkulationsregimen versteht man bevorzugte quasi-station{\"a}re Zust{\"a}nde der atmosph{\"a}rischen Zirkulation auf der planetaren Skala, die f{\"u}r eine bis mehrere Wochen persistieren k{\"o}nnen. Klima{\"a}nderungen, ob nat{\"u}rlich entstanden oder anthropogen verursacht, {\"a}ußern sich in erster Linie durch {\"A}nderungen der Auftrittswahrscheinlichkeiten der nat{\"u}rlichen Regime. In der vorliegenden Arbeit wurden dynamische Mechanismen des Regimeverhaltens und der dekadischen Klimavariabilit{\"a}t der Atmosph{\"a}re bei Abwesenheit zeitlich ver{\"a}nderlicher externer Einflussfaktoren untersucht. Das Hauptwerkzeug daf{\"u}r war ein quasi-geostrophisches Dreischichtenmodell der winterlichen atmosph{\"a}rischen Zirkulation auf der Nordhemisph{\"a}re, das eine spektrale T21-Aufl{\"o}sung, einen orographischen und einen zeitlich konstanten thermischen Antrieb mit nicht-zonalen Anteilen besitzt. Ein solches Modell vermag großskalige atmosph{\"a}rische Str{\"o}mungsvorg{\"a}nge außerhalb der Tropen mit einiger Genauigkeit zu simulieren. Nicht ber{\"u}cksichtigt werden Feuchteprozesse, die Wechselwirkung der Atmosph{\"a}re mit anderen Teilen des Klimasystems sowie anthropogene Einfl{\"u}sse. F{\"u}r das Dreischichtenmodell wurde ein automatisiertes, iteratives Verfahren zur Anpassung des thermischen Modellantriebs neu entwickelt. Jede Iteration des Verfahrens besteht aus einer Testintegration des Modells, ihrer Auswertung, dem Vergleich der Ergebnisse mit den NCEP-NCAR-Reanalysedaten aus den Wintermonaten Dezember, Januar und Februar sowie einer auf diesem Vergleich basierenden Antriebskorrektur. Nach Konvergenz des Verfahrens stimmt das Modell sowohl bez{\"u}glich des zonal gemittelten Klimazustandes als auch bez{\"u}glich der zeitgemittelten nicht-zonalen außertropischen diabatischen Erw{\"a}rmung nahezu perfekt mit den wintergemittelten Reanalysedaten {\"u}berein. In einer 1000-j{\"a}hrigen Simulation wurden die beobachtete mittlere Zirkulation im Winter sowie ihre Variabilit{\"a}t realit{\"a}tsnah reproduziert, insbesondere die Arktische Oszillation (AO) und ihre vertikale Ausdehnung. Der AO-Index des Modells weist deutliche dekadische Schwankungen auf, die allein durch die interne Modelldynamik bedingt sind. Dar{\"u}ber hinaus zeigt das Modell ein Regimeverhalten, das gut mit den Beobachtungsdaten {\"u}bereintimmt. Es besitzt ein Regime, das in etwa der negativen Phase der Nordatlantischen Oszillation (NAO) entspricht und eines, das der positiven Phase der AO {\"a}hnelt. Eine weit verbreitete Hypothese ist die n{\"a}herungsweise {\"U}bereinstimmung zwischen Regimen und station{\"a}ren L{\"o}sungen der Bewegungsgleichungen. In der vorliegenden Arbeit wurde diese Hypothese f{\"u}r das Dreischichtenmodell {\"u}berpr{\"u}ft, mit negativem Resultat. Es wurden mittels eines Funktionalminimierungsverfahrens sechs verschiedene station{\"a}re Zust{\"a}nde gefunden. Diese sind allesamt durch eine {\"a}ußerst unrealistische Zirkulation gekennzeichnet und sind daher weit vom Modellattraktor entfernt. F{\"u}nf der sechs Zust{\"a}nde zeichnen sich durch einen extrem starken subtropischen Jet in der mittleren und obereren Modellschicht aus. Da die Ursache des Regimeverhaltens des Dreischichtenmodells nach wie vor unklar war, wurde auf ein einfacheres Modell, n{\"a}mlich ein barotropes Modell mit T21-Aufl{\"o}sung zur{\"u}ckgegriffen. F{\"u}r die Anpassung des Oberfl{\"a}chenantriebs wurde eine modifizierte Form der iterativen Prozedur verwendet. Die zeitgemittelte Zirkulation des barotropen Modells stimmt sehr gut mit der zeitlich und vertikal gemittelten Zirkulation des Dreischichtenmodells {\"u}berein. Das dominierende r{\"a}umliche Muster der Variabilit{\"a}t besitzt eine AO-{\"a}hnliche Struktur. Zudem besitzt das barotrope Modell zwei Regime, die n{\"a}herungsweise der positiven und negativen Phase der AO entsprechen und somit auch den Regimen des Dreischichtenmodells {\"a}hneln. Im Verlauf der Justierung des Oberfl{\"a}chenantriebs konnte beobachtet werden, dass die zwei Regime des barotropen Modells durch die Vereinigung zweier koexistierender Attraktoren entstanden. Der wahrscheinliche Mechanismus der Attraktorvereinigung ist eine Randkrise eines der beiden Attraktoren, gefolgt von einer explosiven Bifurkation des anderen Attraktors. Es wird die Hypothese aufgestellt, dass der beim barotropen Modell vorgefundene Mechanismus der Regimeentstehung f{\"u}r atmosph{\"a}rische Zirkulationsmodelle mit realit{\"a}tsnahem Regimeverhalten Allgemeing{\"u}ltigkeit besitzt. Gest{\"u}tzt wird die Hypothese durch vier Experimente mit dem Dreischichtenmodell, bei denen jeweils der Parameter der Bodenreibung verringert und die Antriebsanpassung wiederholt wurde. Bei diesen Experimenten erh{\"o}hte sich die Persistenz und die Separiertheit der Regime bei abnehmender Reibung drastisch und damit auch der Anteil dekadischer Zeitskalen an der Variabilit{\"a}t. Die Zunahme der Persistenz der Regime ist charakteristisch f{\"u}r die Ann{\"a}herung an eine inverse innere Krise, deren Existenz aber nicht nachgewiesen werden konnte.}, subject = {Nichtlineare Dynamik}, language = {de} }