@article{GarakaniRichterBoeker2017, author = {Garakani, Tayebeh Mirzaei and Richter, Marina Juliane and B{\"o}ker, Alexander}, title = {Controlling the bio-inspired synthesis of silica}, series = {Journal of colloid and interface science}, volume = {488}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2016.10.069}, pages = {322 -- 334}, year = {2017}, abstract = {The influence of different parameters on the silicification procedure using lysozyme is reported. When polyethoxysiloxane (PEOS), an internally crosslinked silica reservoir, is used, regular structures with a narrow size distribution could be obtained only via introducing the silica precursor in two steps including initial dropping and subsequent addition of residual oil phase in one portion. We found that mixing sequence of mineralizing agents in the presence of a positively charged surfactant plays a key role in terms of silica precipitation when tetraethoxyorthosilicate (TEOS) is the oil phase. In contrast, well mineralized crumpled features with high specific surface area could be synthesized in the presence of PEOS as a silica precursor polymer, regardless of mixing sequence. Moreover, introducing sodium dodecyl sulfate (SDS) as a negatively charged surfactant resulted in regular silica sphere formation only in combination with hexylene glycol (MPD) as a specific co-solvent. Finally, it is demonstrated that by inclusion of different nanoparticles even more sophisticated hybrid materials can be generated.}, language = {en} } @article{RichterSchulzSubkowskietal.2016, author = {Richter, Marina Juliane and Schulz, Alexander and Subkowski, Thomas and B{\"o}ker, Alexander}, title = {Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces}, series = {Journal of colloid and interface science}, volume = {479}, journal = {Journal of colloid and interface science}, publisher = {Elsevier}, address = {San Diego}, issn = {0021-9797}, doi = {10.1016/j.jcis.2016.06.062}, pages = {199 -- 206}, year = {2016}, abstract = {Hydrophobins are highly surface active proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes. We investigate hydrophobin self-assembly at oil/water interfaces to deepen the understanding of protein behavior in order to improve our biomimetic synthesis. Therefore, we carried out pendant drop measurements of hydrophobin stabilized oil/water systems determining the time-dependent IFT and the dilatational rheology with additional adaptation to the Serrien protein model. We show that the class I hydrophobin H*Protein B adsorbs at an oil/water interface where it forms a densely-packed interfacial protein layer, which dissipates energy during droplet oscillation. Furthermore, the interfacial protein layer exhibits shear thinning behavior. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} }