@article{PaulMamonekeneVateretal.2015, author = {Paul, Christiane and Mamonekene, Victor and Vater, Marianne and Feulner, Philine G. D. and Engelmann, Jacob and Tiedemann, Ralph and Kirschbaum, Frank}, title = {Comparative histology of the adult electric organ among four species of the genus Campylomormyrus (Teleostei: Mormyridae)}, series = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, volume = {201}, journal = {Journal of comparative physiology : A, Neuroethology, sensory, neural, and behavioral physiology}, number = {4}, publisher = {Springer}, address = {New York}, issn = {0340-7594}, doi = {10.1007/s00359-015-0995-6}, pages = {357 -- 374}, year = {2015}, abstract = {The electric organ (EO) of weakly electric mormyrids consists of flat, disk-shaped electrocytes with distinct anterior and posterior faces. There are multiple species-characteristic patterns in the geometry of the electrocytes and their innervation. To further correlate electric organ discharge (EOD) with EO anatomy, we examined four species of the mormyrid genus Campylomormyrus possessing clearly distinct EODs. In C. compressirostris, C. numenius, and C. tshokwe, all of which display biphasic EODs, the posterior face of the electrocytes forms evaginations merging to a stalk system receiving the innervation. In C. tamandua that emits a triphasic EOD, the small stalks of the electrocyte penetrate the electrocyte anteriorly before merging on the anterior side to receive the innervation. Additional differences in electrocyte anatomy among the former three species with the same EO geometry could be associated with further characteristics of their EODs. Furthermore, in C. numenius, ontogenetic changes in EO anatomy correlate with profound changes in the EOD. In the juvenile the anterior face of the electrocyte is smooth, whereas in the adult it exhibits pronounced surface foldings. This anatomical difference, together with disparities in the degree of stalk furcation, probably contributes to the about 12 times longer EOD in the adult.}, language = {en} } @article{VaterKoessl2011, author = {Vater, Marianne and Koessl, Manfred}, title = {Comparative aspects of cochlear functional organization in mammals}, series = {Hearing research}, volume = {273}, journal = {Hearing research}, number = {1-2}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0378-5955}, doi = {10.1016/j.heares.2010.05.018}, pages = {89 -- 99}, year = {2011}, abstract = {This review addresses the functional organization of the mammalian cochlea under a comparative and evolutionary perspective. A comparison of the monotreme cochlea with that of marsupial and placental mammals highlights important evolutionary steps towards a hearing organ dedicated to process higher frequencies and a larger frequency range than found in non-mammalian vertebrates. Among placental mammals, there are numerous cochlear specializations which relate to hearing range in adaptation to specific habitats that are superimposed on a common basic design. These are illustrated by examples of specialist ears which evolved excellent high frequency hearing and echolocation (bats and dolphins) and by the example of subterranean rodents with ears devoted to processing low frequencies. Furthermore, structural functional correlations important for tonotopic cochlear organization and predictions of hearing capabilities are discussed.}, language = {en} } @article{KorniienkoTiedemannVateretal.2020, author = {Korniienko, Yevheniia and Tiedemann, Ralph and Vater, Marianne and Kirschbaum, Frank}, title = {Ontogeny of the electric organ discharge and of the papillae of the electrocytes in the weakly electric fish Campylomormyrus rhynchophorus (Teleostei: Mormyridae)}, series = {The journal of comparative neurology}, volume = {529}, journal = {The journal of comparative neurology}, number = {5}, publisher = {Wiley}, address = {Hoboken}, issn = {0021-9967}, doi = {10.1002/cne.25003}, pages = {1052 -- 1065}, year = {2020}, abstract = {The electric organ of the mormyrid weakly electric fish,Campylomormyrus rhynchophorus(Boulenger, 1898), undergoes changes in both the electric organ discharge (EOD) and the light and electron microscopic morphology as the fish mature from the juvenile to the adult form. Of particular interest was the appearance of papillae, surface specializations of the uninnervated anterior face of the electrocyte, which have been hypothesized to increase the duration of the EOD. In a 24.5 mm long juvenile the adult electric organ (EO) was not yet functional, and the electrocytes lacked papillae. A 40 mm long juvenile, which produced a short biphasic EOD of 1.3 ms duration, shows small papillae (average area 136 mu m(2)). In contrast, the EOD of a 79 mm long juvenile was triphasic. The large increase in duration of the EOD to 23.2 ms was accompanied by a small change in size of the papillae (average area 159 mu m(2)). Similarly, a 150 mm long adult produced a triphasic EOD of comparable duration to the younger stage (24.7 ms) but featured a prominent increase in size of the papillae (average area 402 mu m(2)). Thus, there was no linear correlation between EOD duration and papillary size. The most prominent ultrastructural change was at the level of the myofilaments, which regularly extended into the papillae, only in the oldest specimen-probably serving a supporting function. Physiological mechanisms, like gene expression levels, as demonstrated in someCampylomormyrusspecies, might be more important concerning the duration of the EOD.}, language = {en} } @article{MoraMaciasVateretal.2004, author = {Mora, Emanuel C. and Macias, S. and Vater, Marianne and Coro, Frank and Kossl, Manfred}, title = {Specializations for aerial hawking in the echolocation system of Molossus molossus (Molossidae, Chiroptera)}, issn = {0340-7594}, year = {2004}, abstract = {While searching for prey, Molossus molossus broadcasts narrow-band calls of 11.42 ms organized in pairs of pulses that alternate in frequency. The first signal of the pair is at 34.5 kHz, the second at 39.6 kHz. Pairs of calls with changing frequencies were only emitted when the interpulse intervals were below 200 ms. Maximum duty cycles during search phase are close to 20\%. Frequency alternation of search calls is interpreted as a mechanism for increasing duty cycle and thus the temporal continuity of scanning, as well as increasing the detection range. A neurophysiological correlate for the processing of search calls was found in the inferior colliculus. 64\% of neurons respond to frequencies in the 30- to 40-kHz range and only in this frequency range were closed tuning curves found for levels below 40 dB SPL. In addition, 15\% of the neurons have double-tuned frequency-threshold curves with best thresholds at 34 and 39 kHz. Differing from observations in other bats, approach calls of M. molossus are longer and of higher frequencies than search calls. Close to the roost, the call frequency is increased to 45.049.8 kHz and, in addition, extremely broadband signals are emitted. This demonstrates high plasticity of call design}, language = {en} } @article{LeGrimellecGiocondiLenoiretal.2002, author = {LeGrimellec, Christian and Giocondi, Marie-Cecile and Lenoir, Marc and Vater, Marianne and Sposito, Gerard and Pujol, Remy}, title = {High-resolution three-dimensional imaging of the lateral plasma membrane of cochlear outer hair cells by atomic force microscopy}, year = {2002}, language = {en} } @article{Vater2000, author = {Vater, Marianne}, title = {Auditory brainstem processing in bats}, isbn = {3-527-27587- 8}, year = {2000}, language = {en} } @article{KemmerVater2001, author = {Kemmer, Michaela and Vater, Marianne}, title = {Cellular and subcellular distribution of AMPA-type glutamate receptor subunits and metabotropic glutamate receptor 1alpha in the cochlear nucleus of the horseshoe bat (Rhinolophus rouxi).}, issn = {0378-5955}, year = {2001}, language = {en} } @article{Vater2000, author = {Vater, Marianne}, title = {Cochlear specializations in bats}, isbn = {3-527-27587-8}, year = {2000}, language = {en} } @article{KemmerVater2001, author = {Kemmer, Michaela and Vater, Marianne}, title = {Functional organization of the dorsal cochlear nucleus of the horseshoe bat (Rhinolophus rouxi) studied by GABA and glycine immunocytochemistry and electron microscopy.}, issn = {0340-2061}, year = {2001}, language = {en} } @article{Vater2000, author = {Vater, Marianne}, title = {Cochlear specializations in bats}, isbn = {3-527-27587-8}, year = {2000}, language = {en} }