@article{BordyugovFischerEngeletal.2010, author = {Bordyugov, Grigory and Fischer, Nils and Engel, Harald and Manz, Niklas and Steinbock, Oliver}, title = {Anomalous dispersion in the Belousov-Zhabotinsky reaction : experiments and modeling}, issn = {0167-2789}, doi = {10.1016/j.physd.2009.10.022}, year = {2010}, abstract = {We report results on dispersion relations and instabilities of traveling waves in excitable systems. Experiments employ solutions of the 1,4-cyclohexanedione Belousov-Zhabotinsky reaction confined to thin capillary tubes which create a pseudo-one-dimensional system. Theoretical analyses focus on a three-variable reaction-diffusion model that is known to reproduce qualitatively many of the experimentally observed dynamics. Using continuation methods, we show that the transition from normal, monotonic to anomalous, single-overshoot dispersion curves is due to an orbit flip bifurcation of the solitary pulse homoclinics. In the case of "wave stacking", this anomaly induces attractive pulse interaction, slow solitary pulses, and faster wave trains. For "wave merging", wave trains break up in the wake of the slow solitary pulse due to an instability of wave trains at small wavelength. A third case, "wave tracking" is characterized by the non-existence of solitary waves but existence of periodic wave trains. The corresponding dispersion curve is a closed curve covering a finite band of wavelengths.}, language = {en} }