@article{NiedSchroeterLuedtkeetal.2017, author = {Nied, Manuela and Schr{\"o}ter, Kai and L{\"u}dtke, Stefan and Nguyen, Viet Dung and Merz, Bruno}, title = {What are the hydro-meteorological controls on flood characteristics?}, series = {Journal of hydrology}, volume = {545}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2016.12.003}, pages = {310 -- 326}, year = {2017}, abstract = {Flood events can be expressed by a variety of characteristics such as flood magnitude and extent, event duration or incurred loss. Flood estimation and management may benefit from understanding how the different flood characteristics relate to the hydrological catchment conditions preceding the event and to the meteorological conditions throughout the event. In this study, we therefore propose a methodology to investigate the hydro-meteorological controls on different flood characteristics, based on the simulation of the complete flood risk chain from the flood triggering precipitation event, through runoff generation in the catchment, flood routing and possible inundation in the river system and floodplains to flood loss. Conditional cumulative distribution functions and regression tree analysis delineate the seasonal varying flood processes and indicate that the effect of the hydrological pre-conditions, i.e. soil moisture patterns, and of the meteorological conditions, i.e. weather patterns, depends on the considered flood characteristic. The methodology is exemplified for the Elbe catchment. In this catchment, the length of the build-up period, the event duration and the number of gauges undergoing at least a 10-year flood are governed by weather patterns. The affected length and the number of gauges undergoing at least a 2-year flood are however governed by soil moisture patterns. In case of flood severity and loss, the controlling factor is less pronounced. Severity is slightly governed by soil moisture patterns whereas loss is slightly governed by weather patterns. The study highlights that flood magnitude and extent arise from different flood generation processes and concludes that soil moisture patterns as well as weather patterns are not only beneficial to inform on possible flood occurrence but also on the involved flood processes and resulting flood characteristics.}, language = {en} } @phdthesis{Nied2016, author = {Nied, Manuela}, title = {The role of soil moisture and weather patterns for flood occurrence and characteristics at the river basin scale}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94612}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 86}, year = {2016}, abstract = {Flood generation at the scale of large river basins is triggered by the interaction of the hydrological pre-conditions and the meteorological event conditions at different spatial and temporal scales. This interaction controls diverse flood generating processes and results in floods varying in magnitude and extent, duration as well as socio-economic consequences. For a process-based understanding of the underlying cause-effect relationships, systematic approaches are required. These approaches have to cover the complete causal flood chain, including the flood triggering meteorological event in combination with the hydrological (pre-)conditions in the catchment, runoff generation, flood routing, possible floodplain inundation and finally flood losses. In this thesis, a comprehensive probabilistic process-based understanding of the causes and effects of floods is advanced. The spatial and temporal dynamics of flood events as well as the geophysical processes involved in the causal flood chain are revealed and the systematic interconnections within the flood chain are deciphered by means of the classification of their associated causes and effects. This is achieved by investigating the role of the hydrological pre-conditions and the meteorological event conditions with respect to flood occurrence, flood processes and flood characteristics as well as their interconnections at the river basin scale. Broadening the knowledge about flood triggers, which up to now has been limited to linking large-scale meteorological conditions to flood occurrence, the influence of large-scale pre-event hydrological conditions on flood initiation is investigated. Using the Elbe River basin as an example, a classification of soil moisture, a key variable of pre-event conditions, is developed and a probabilistic link between patterns of soil moisture and flood occurrence is established. The soil moisture classification is applied to continuously simulated soil moisture data which is generated using the semi-distributed conceptual rainfall-runoff model SWIM. Applying successively a principal component analysis and a cluster analysis, days of similar soil moisture patterns are identified in the period November 1951 to October 2003. The investigation of flood triggers is complemented by including meteorological conditions described by a common weather pattern classification that represents the main modes of atmospheric state variability. The newly developed soil moisture classification thereby provides the basis to study the combined impact of hydrological pre-conditions and large-scale meteorological event conditions on flood occurrence at the river basin scale. A process-based understanding of flood generation and its associated probabilities is attained by classifying observed flood events into process-based flood types such as snowmelt floods or long-rain floods. Subsequently, the flood types are linked to the soil moisture and weather patterns. Further understanding of the processes is gained by modeling of the complete causal flood chain, incorporating a rainfall-runoff model, a 1D/2D hydrodynamic model and a flood loss model. A reshuffling approach based on weather patterns and the month of their occurrence is developed to generate synthetic data fields of meteorological conditions, which drive the model chain, in order to increase the flood sample size. From the large number of simulated flood events, the impact of hydro-meteorological conditions on various flood characteristics is detected through the analysis of conditional cumulative distribution functions and regression trees. The results show the existence of catchment-scale soil moisture patterns, which comprise of large-scale seasonal wetting and drying components as well as of smaller-scale variations related to spatially heterogeneous catchment processes. Soil moisture patterns frequently occurring before the onset of floods are identified. In winter, floods are initiated by catchment-wide high soil moisture, whereas in summer the flood-initiating soil moisture patterns are diverse and the soil moisture conditions are less stable in time. The combined study of both soil moisture and weather patterns shows that the flood favoring hydro-meteorological patterns as well as their interactions vary seasonally. In the analysis period, 18 \% of the weather patterns only result in a flood in the case of preceding soil saturation. The classification of 82 past events into flood types reveals seasonally varying flood processes that can be linked to hydro-meteorological patterns. For instance, the highest flood potential for long-rain floods is associated with a weather pattern that is often detected in the presence of so-called 'Vb' cyclones. Rain-on-snow and snowmelt floods are associated with westerly and north-westerly wind directions. The flood characteristics vary among the flood types and can be reproduced by the applied model chain. In total, 5970 events are simulated. They reproduce the observed event characteristics between September 1957 and August 2002 and provide information on flood losses. A regression tree analysis relates the flood processes of the simulated events to the hydro-meteorological (pre-)event conditions and highlights the fact that flood magnitude is primarily controlled by the meteorological event, whereas flood extent is primarily controlled by the soil moisture conditions. Describing flood occurrence, processes and characteristics as a function of hydro-meteorological patterns, this thesis is part of a paradigm shift towards a process-based understanding of floods. The results highlight that soil moisture patterns as well as weather patterns are not only beneficial to a probabilistic conception of flood initiation but also provide information on the involved flood processes and the resulting flood characteristics.}, language = {en} } @article{MerzAertsArnbjergNielsenetal.2014, author = {Merz, Bruno and Aerts, Jeroen C. J. H. and Arnbjerg-Nielsen, Karsten and Baldi, M. and Becker, Andrew C. and Bichet, A. and Bloeschl, G. and Bouwer, Laurens M. and Brauer, Achim and Cioffi, F. and Delgado, Jose Miguel Martins and Gocht, M. and Guzzetti, F. and Harrigan, S. and Hirschboeck, K. and Kilsby, C. and Kron, W. and Kwon, H. -H. and Lall, U. and Merz, R. and Nissen, K. and Salvatti, P. and Swierczynski, Tina and Ulbrich, U. and Viglione, A. and Ward, P. J. and Weiler, M. and Wilhelm, B. and Nied, Manuela}, title = {Floods and climate: emerging perspectives for flood risk assessment and management}, series = {Natural hazards and earth system sciences}, volume = {14}, journal = {Natural hazards and earth system sciences}, number = {7}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-14-1921-2014}, pages = {1921 -- 1942}, year = {2014}, abstract = {Flood estimation and flood management have traditionally been the domain of hydrologists, water resources engineers and statisticians, and disciplinary approaches abound. Dominant views have been shaped; one example is the catchment perspective: floods are formed and influenced by the interaction of local, catchment-specific characteristics, such as meteorology, topography and geology. These traditional views have been beneficial, but they have a narrow framing. In this paper we contrast traditional views with broader perspectives that are emerging from an improved understanding of the climatic context of floods. We come to the following conclusions: (1) extending the traditional system boundaries (local catchment, recent decades, hydrological/hydraulic processes) opens up exciting possibilities for better understanding and improved tools for flood risk assessment and management. (2) Statistical approaches in flood estimation need to be complemented by the search for the causal mechanisms and dominant processes in the atmosphere, catchment and river system that leave their fingerprints on flood characteristics. (3) Natural climate variability leads to time-varying flood characteristics, and this variation may be partially quantifiable and predictable, with the perspective of dynamic, climate-informed flood risk management. (4) Efforts are needed to fully account for factors that contribute to changes in all three risk components (hazard, exposure, vulnerability) and to better understand the interactions between society and floods. (5) Given the global scale and societal importance, we call for the organization of an international multidisciplinary collaboration and data-sharing initiative to further understand the links between climate and flooding and to advance flood research.}, language = {en} } @article{KottmeierAgnonAlHalbounietal.2016, author = {Kottmeier, Christoph and Agnon, Amotz and Al-Halbouni, Djamil and Alpert, Pinhas and Corsmeier, Ulrich and Dahm, Torsten and Eshel, Adam and Geyer, Stefan and Haas, Michael and Holohan, Eoghan and Kalthoff, Norbert and Kishcha, Pavel and Krawczyk, Charlotte and Lati, Joseph and Laronne, Jonathan B. and Lott, Friederike and Mallast, Ulf and Merz, Ralf and Metzger, Jutta and Mohsen, Ayman and Morin, Efrat and Nied, Manuela and Roediger, Tino and Salameh, Elias and Sawarieh, Ali and Shannak, Benbella and Siebert, Christian and Weber, Michael}, title = {New perspectives on interdisciplinary earth science at the Dead Sea: The DESERVE project}, series = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, volume = {544}, journal = {The science of the total environment : an international journal for scientific research into the environment and its relationship with man}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0048-9697}, doi = {10.1016/j.scitotenv.2015.12.003}, pages = {1045 -- 1058}, year = {2016}, abstract = {The Dead Sea region has faced substantial environmental challenges in recent decades, including water resource scarcity, similar to 1 m annual decreases in the water level, sinkhole development, ascending-brine freshwater pollution, and seismic disturbance risks. Natural processes are significantly affected by human interference as well as by climate change and tectonic developments over the long term. To get a deep understanding of processes and their interactions, innovative scientific approaches that integrate disciplinary research and education are required. The research project DESERVE (Helmholtz Virtual Institute Dead Sea Research Venue) addresses these challenges in an interdisciplinary approach that includes geophysics, hydrology, and meteorology. The project is implemented by a consortium of scientific institutions in neighboring countries of the Dead Sea (Israel, Jordan, Palestine Territories) and participating German Helmholtz Centres (KIT, GFZ, UFZ). A new monitoring network of meteorological, hydrological, and seismic/geodynamic stations has been established, and extensive field research and numerical simulations have been undertaken. For the first time, innovative measurement and modeling techniques have been applied to the extreme conditions of the Dead Sea and its surroundings. The preliminary results show the potential of these methods. First time ever performed eddy covariance measurements give insight into the governing factors of Dead Sea evaporation. High-resolution bathymetric investigations reveal a strong correlation between submarine springs and neo-tectonic patterns. Based on detailed studies of stratigraphy and borehole information, the extension of the subsurface drainage basin of the Dead Sea is now reliably estimated. Originality has been achieved in monitoring flash floods in an arid basin at its outlet and simultaneously in tributaries, supplemented by spatio-temporal rainfall data. Low-altitude, high resolution photogrammetry, allied to satellite image analysis and to geophysical surveys (e.g. shear-wave reflections) has enabled a more detailed characterization of sinkhole morphology and temporal development and the possible subsurface controls thereon. All the above listed efforts and scientific results take place with the interdisciplinary education of young scientists. They are invited to attend joint thematic workshops and winter schools as well as to participate in field experiments. (C) 2015 The Authors. Published by Elsevier B.V.}, language = {en} }