@article{BronnerLeyssnerStremlauetal.2012, author = {Bronner, C. and Leyssner, F. and Stremlau, S. and Utecht, Manuel Martin and Saalfrank, Peter and Klamroth, Tillmann and Tegeder, P.}, title = {Electronic structure of a subnanometer wide bottom-up fabricated graphene nanoribbon: End states, band gap, and dispersion}, series = {Physical review : B, Condensed matter and materials physics}, volume = {86}, journal = {Physical review : B, Condensed matter and materials physics}, number = {8}, publisher = {American Physical Society}, address = {College Park}, issn = {1098-0121}, doi = {10.1103/PhysRevB.86.085444}, pages = {5}, year = {2012}, abstract = {Angle-resolved two-photon photoemission and high-resolution electron energy loss spectroscopy are employed to derive the electronic structure of a subnanometer atomically precise quasi-one-dimensional graphene nanoribbon (GNR) on Au(111). We resolved occupied and unoccupied electronic bands including their dispersion and determined the band gap, which possesses an unexpectedly large value of 5.1 eV. Supported by density functional theory calculations for the idealized infinite polymer and finite size oligomers, an unoccupied nondispersive electronic state with an energetic position in the middle of the band gap of the GNR could be identified. This state resides at both ends of the ribbon (end state) and is only found in the finite sized systems, i.e., the oligomers.}, language = {en} } @article{LuoUtechtDokicetal.2011, author = {Luo, Ying and Utecht, Manuel Martin and Dokic, Jadranka and Korchak, Sergey and Vieth, Hans-Martin and Haag, Rainer and Saalfrank, Peter}, title = {Cis-trans isomerisation of substituted aromatic imines a comparative experimental and theoretical study}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {12}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201100179}, pages = {2311 -- 2321}, year = {2011}, abstract = {The cis-trans isomerisation of N-benzylideneaniline (NBA) and derivatives containing a central C=N bond has been investigated experimentally and theoretically. Eight different NBA molecules in three different solvents were irradiated to enforce a photochemical trans (hv) -> cis isomerisation and the kinetics of the thermal backreaction cis (Delta)-> trans were determined by NMR spectroscopy measurements in the temperature range between 193 and 288 K. Theoretical calculations using density functional theory and Eyring transition-state theory were carried out for 12 different NBA species in the gas phase and three different solvents to compute thermal isomerisation rates of the thermal back reaction. While the computed absolute rates are too large, they reveal and explain experimental trends. Time-dependent density functional theory provides optical spectra for vertical transitions and excitation energy differences between trans and cis forms. Together with isomerisation rates, the latter can be used to identify "optimal switches" with good photochromicity and reasonable thermal stability.}, language = {en} } @article{UtechtKlamrothSaalfrank2011, author = {Utecht, Manuel Martin and Klamroth, Tillmann and Saalfrank, Peter}, title = {Optical absorption and excitonic coupling in azobenzenes forming self-assembled monolayers a study based on density functional theory}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {13}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {48}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c1cp22793a}, pages = {21608 -- 21614}, year = {2011}, abstract = {Based on the analysis of optical absorption spectra, it has recently been speculated that the excitonic coupling between individual azobenzene-functionalized alkanethiols arranged in a self-assembled monolayer (SAM) on a gold surface could be strong enough to hinder collective trans-cis isomerization-on top of steric hindrance [Gahl et al., J. Am. Chem. Soc., 2010, 132, 1831]. Using models of SAMs of increasing complexity (dimer, linear N-mers, and two-dimensionally arranged N-mers) and density functional theory on the (TD-) B3LYP/6-31G* level, we determine optical absorption spectra, the nature and magnitude of excitonic couplings, and the corresponding spectral shifts. It is found that at inter-monomer distances of about 20 angstrom and above, TD-B3LYP excitation frequencies (and signal intensities) can be well described by the frequently used point-dipole approximation. Further, calculated blue shifts in optical absorption spectra account for the experimental observations made for azobenzene/gold SAMs, and hint to the fact that they can indeed be responsible for reduced switching probability in densely packed self-assembled structures.}, language = {en} }