@article{StreckerMarrett1999, author = {Strecker, Manfred and Marrett, R.}, title = {Kinematic evolution of fault ramps and role indevelopment of landslides and lakes in intermontane valleys of northwestern Argentina}, issn = {0091-7613}, year = {1999}, language = {en} } @article{TrauthAlonsoHaseltonetal.2000, author = {Trauth, Martin H. and Alonso, Ricardo N. and Haselton, Kirk R. and Hermanns, Reginald L. and Strecker, Manfred}, title = {Climate change and mass movements in the NW Argentine Andes}, year = {2000}, language = {en} } @article{MarrettStrecker2000, author = {Marrett, R. and Strecker, Manfred}, title = {Response of intracontionental deformation in the central Andes to late Cenozoic reorganization of South American Plate motions}, year = {2000}, language = {en} } @article{HintersbergerThiedeStreckeretal.2010, author = {Hintersberger, Esther and Thiede, Rasmus Christoph and Strecker, Manfred and Hacker, Bradley R.}, title = {East-west extension in the NW Indian Himalaya}, issn = {0016-7606}, doi = {10.1130/B26589.1}, year = {2010}, abstract = {Explaining the presence of normal faults in overall compressive settings is a challenging problem in understanding the tectonics of active mountain belts. The Himalayan-Tibetan orogenic system is an excellent setting to approach this problem because it preserves one of the most dramatic records of long-term, contemporaneous shortening and extension. Over the past decades, several studies have described extensional features, not only in the Tibetan Plateau, but also in the Himalaya. For a long time, the favored model explained the function of the Southern Tibetan detachment system, a major fault zone in the Himalaya, as a decoupling horizon between the regime of crustal shortening forming the Himalayan wedge to the south and the extensional regime of the Tibetan Plateau to the north. However, in recent years, increasing evidence has shown that N-S-trending normal faults in the Central Himalaya crosscut not only the Southern Tibetan detachment system, but also the Main Central thrust. Here, we present new structural data and geologic evidence collected within the NW Indian Himalaya and combine them with previously published seismicity data sets in order to document pervasive E-W extension accommodated along N-S-trending faults extending as far south as the footwall of the Main Central thrust. We conducted a kinematic analysis of fault striations on brittle faults, documented and mapped fault scarps in Quaternary sedimentary deposits using satellite imagery, and made field observations in the Greater Sutlej region (Spiti, Lahul, Kinnaur) and the Garhwal Himalaya. Studies of extensional features within the regionally NW- SE-trending NW Indian Himalaya provide the advantage that arc-parallel and E-W extension can be separated, in contrast to the Central Himalaya. Therefore, our observations of E-W extension in the Indian NW Himalaya are well suited to test the applicability of current tectonic models for the whole Himalaya. We favor the interpretation of E-W extension in the NW Indian Himalaya as a propagation of extension driven by collapse of the Tibetan Plateau.}, language = {en} } @article{OzsayinCinerRojayetal.2013, author = {Ozsayin, Erman and Ciner, T. Attila and Rojay, F. Bora and Dirik, R. Kadir and Melnick, Daniel and Fernandez-Blanco, David and Bertotti, Giovanni and Schildgen, Taylor F. and Garcin, Yannick and Strecker, Manfred and Sudo, Masafumi}, title = {Plio-Quaternary extensional tectonics of the Central Anatolian Plateau a case study from the Tuz Golu Basin, Turkey}, series = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, volume = {22}, journal = {Turkish journal of earth sciences = T{\"u}rk yerbilimleri dergisi}, number = {5}, publisher = {T{\"u}bitak}, address = {Ankara}, issn = {1300-0985}, doi = {10.3906/yer-1210-5}, pages = {691 -- 714}, year = {2013}, abstract = {The Tuz Golu Basin is the largest sedimentary depression located at the center of the Central Anatolian Plateau, an extensive, low-relief region with elevations of ca. 1 km located between the Pontide and Tauride mountains. Presently, the basin morphology and sedimentation processes are mainly controlled by the extensional Tuz Golu Fault Zone in the east and the transtensional Inonu-Eskisehir Fault System in the west. The purpose of this study is to contribute to the understanding of the Plio-Quaternary deformation history and to refine the timing of the latest extensional phase of the Tuz Golu Basin. Field observations, kinematic analyses, interpretations of seismic reflection lines, and Ar-40/Ar-39 dating of a key ignimbrite layer suggest that a regional phase of NNW-SSE to NE-SW contraction ended by 6.81 +/- 0.24 Ma and was followed by N-S to NE-SW extension during the Pliocene-Quaternary periods. Based on sedimentological and chronostratigraphic markers, the average vertical displacement rates over the past 5 or 3 Ma with respect to the central part of Tuz Golu Lake are 0.03 to 0.05 mm/year for the fault system at the western flank of the basin and 0.08 to 0.13 mm/year at the eastern flank. Paleo-shorelines of the Tuz Golu Lake, vestiges of higher lake levels related to Quaternary climate change, are important strain markers and were formed during Last Glacial Maximum conditions as indicated by a radiocarbon age of 21.8 +/- 0.4 ka BP obtained from a stromatolitic crust. Geomorphic observations and deformed lacustrine shorelines suggest that the main strand of the Tuz Golu Fault Zone straddling the foothills of the Sereflikochisar-Aksaray range has not been active during the Holocene. Instead, deformation appears to have migrated towards the interior of the basin along an offshore fault that runs immediately west of Sereflikochisar Peninsula. This basinward migration of deformation is probably associated with various processes acting at the lithospheric scale, such as plateau uplift and/or microplate extrusion.}, language = {en} } @article{BallatoLandgrafSchildgenetal.2015, author = {Ballato, Paolo and Landgraf, Angela and Schildgen, Taylor F. and Stockli, Daniel F. and Fox, Matthew and Ghassemi, Mohammad R. and Kirby, Eric and Strecker, Manfred}, title = {The growth of a mountain belt forced by base-level fall: Tectonics and surface processes during the evolution of the Alborz Mountains, N Iran}, series = {Earth \& planetary science letters}, volume = {425}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2015.05.051}, pages = {204 -- 218}, year = {2015}, abstract = {The idea that climatically modulated erosion may impact orogenic processes has challenged geoscientists for decades. Although modeling studies and physical calculations have provided a solid theoretical basis supporting this interaction, to date, field-based work has produced inconclusive results. The central-western Alborz Mountains in the northern sectors of the Arabia-Eurasia collision zone constitute a promising area to explore these potential feedbacks. This region is characterized by asymmetric precipitation superimposed on an orogen with a history of spatiotemporal changes in exhumation rates, deformation patterns, and prolonged, km-scale base-level changes. Our analysis suggests that despite the existence of a strong climatic gradient at least since 17.5 Ma, the early orogenic evolution (from similar to 36 to 9-6 Ma) was characterized by decoupled orographic precipitation and tectonics. In particular, faster exhumation and sedimentation along the more arid southern orogenic flank point to a north-directed accretionary flux and underthrusting of Central Iran. Conversely, from 6 to 3 Ma, erosion rates along the northern orogenic flank became higher than those in the south, where they dropped to minimum values. This change occurred during a similar to 3-Myr-long, km-scale base-level lowering event in the Caspian Sea. We speculate that mass redistribution processes along the northern flank of the Alborz and presumably across all mountain belts adjacent to the South Caspian Basin and more stable areas of the Eurasian plate increased the sediment load in the basin and ultimately led to the underthrusting of the Caspian Basin beneath the Alborz Mountains. This underthrusting in turn triggered a new phase of northward orogenic expansion, transformed the wetter northern flank into a new pro-wedge, and led to the establishment of apparent steady-state conditions along the northern orogenic flank (i.e., rock uplift equal to erosion rates). Conversely, the southern mountain front became the retro-wedge and experienced limited tectonic activity. These observations overall raise the possibility that mass-distribution processes during a pronounced erosion phase driven by base-level changes may have contributed to the inferred regional plate-tectonic reorganization of the northern Arabia-Eurasia collision during the last similar to 5 Ma. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{BallatoCifelliHeidarzadehetal.2017, author = {Ballato, Paolo and Cifelli, Francesca and Heidarzadeh, Ghasem and Ghassemi, Mohammad R. and Wickert, Andrew D. and Hassanzadeh, Jamshid and Dupont-Nivet, Guillaume and Balling, Philipp and Sudo, Masafumi and Zeilinger, Gerold and Schmitt, Axel K. and Mattei, Massimo and Strecker, Manfred}, title = {Tectono-sedimentary evolution of the northern Iranian Plateau: insights from middle-late Miocene foreland-basin deposits}, series = {Basin research}, volume = {29}, journal = {Basin research}, publisher = {Wiley}, address = {Hoboken}, issn = {0950-091X}, doi = {10.1111/bre.12180}, pages = {417 -- 446}, year = {2017}, abstract = {Sedimentary basins in the interior of orogenic plateaus can provide unique insights into the early history of plateau evolution and related geodynamic processes. The northern sectors of the Iranian Plateau of the Arabia-Eurasia collision zone offer the unique possibility to study middle-late Miocene terrestrial clastic and volcaniclastic sediments that allow assessing the nascent stages of collisional plateau formation. In particular, these sedimentary archives allow investigating several debated and poorly understood issues associated with the long-term evolution of the Iranian Plateau, including the regional spatio-temporal characteristics of sedimentation and deformation and the mechanisms of plateau growth. We document that middle-late Miocene crustal shortening and thickening processes led to the growth of a basement-cored range (Takab Range Complex) in the interior of the plateau. This triggered the development of a foreland-basin (Great Pari Basin) to the east between 16.5 and 10.7Ma. By 10.7Ma, a fast progradation of conglomerates over the foreland strata occurred, most likely during a decrease in flexural subsidence triggered by rock uplift along an intraforeland basement-cored range (Mahneshan Range Complex). This was in turn followed by the final incorporation of the foreland deposits into the orogenic system and ensuing compartmentalization of the formerly contiguous foreland into several intermontane basins. Overall, our data suggest that shortening and thickening processes led to the outward and vertical growth of the northern sectors of the Iranian Plateau starting from the middle Miocene. This implies that mantle-flow processes may have had a limited contribution toward building the Iranian Plateau in NW Iran.}, language = {en} } @article{KueblerStreichLuecketal.2017, author = {K{\"u}bler, Simon and Streich, R. and L{\"u}ck, Erika and Hoffmann, M. and Friedrich, A. M. and Strecker, Manfred}, title = {Active faulting in a populated low-strain setting (Lower Rhine Graben, Central Europe) identified by geomorphic, geophysical and geological analysis}, series = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, volume = {432}, journal = {Seismicity, fault rupture and earthquake hazards in slowly deforming regions}, publisher = {The Geological Society}, address = {London}, isbn = {978-1-86239-745-3}, issn = {0305-8719}, doi = {10.1144/SP432.11}, pages = {127 -- 146}, year = {2017}, abstract = {The Lower Rhine Graben (Central Europe) is a prime example of a seismically active low-strain rift zone characterized by pronounced anthropogenic and climatic overprint of structures, and long recurrence intervals of large earthquakes. These factors render the identification of active faults and surface ruptures difficult. We investigated two fault scarps in the Lower Rhine Graben, to decipher their structural character, offset and potential seismogenic origin. Both scarps were modified by anthropogenic activity. The Hemmerich site lies c. 20 km SW of Cologne, along the Erft Fault. The Untermaubach site lies SW of Duren, where the Schafberg Fault projects into the Rur River valley. At the Hemmerich site, geomorphic and geophysical data, as well as exploratory coring reveal evidence of repeated normal faulting. Geophysical analysis and palaeoseismological excavation at the Untermaubach site reveal a complex fault zone in Holocene gravels characterized by subtle gravel deformation. Differentiation of tectonic and fluvial features was only possible with trenching, because fault structures and grain sizes of the sediments were below the resolution of the geophysical data. Despite these issues, our investigation demonstrates that valuable insight into past earthquakes and seismogenic deformation in a low-strain environment can be revealed using a multidisciplinary approach.}, language = {en} } @article{FigueroaVillegasWeissHongnetal.2020, author = {Figueroa Villegas, Sara and Weiss, Jonathan R. and Hongn, Fernando D. and Pingel, Heiko and Escalante, Leonardo and El{\´i}as, Leonardo and Aranda-Viana, R. Germ{\´a}n and Strecker, Manfred}, title = {Late pleistocene to recent deformation in the thick-skinned fold-and-thrust belt of Northwestern Argentina (Central Calchaqui Valley, 26 degrees S)}, series = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, volume = {40}, journal = {Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS}, number = {1}, publisher = {American Geophysical Union}, address = {Washington, DC}, issn = {0278-7407}, doi = {10.1029/2020TC006394}, pages = {20}, year = {2020}, abstract = {The thick-skinned fold-and-thrust belt on the eastern flank of the Andean Plateau in northwestern Argentina (NWA) is a zone of active contractional deformation characterized by fault-bounded mountain ranges with no systematic spatiotemporal pattern of tectonic activity. In contrast, the thin-skinned Subandean fold-and-thrust belt of northern Argentina and southern Bolivia is characterized primarily by in-sequence (i.e., west to east) fault progression, with a narrow zone of Quaternary deformation focused at the front of the orogenic wedge. To better understand how recent deformation is accommodated across these mountain ranges and the Argentinian portion of the orogen in particular, estimating and comparing deformation rates and patterns across different timescales is essential. We present Late Pleistocene shortening rates for the central Calchaqui intermontane valley in NWA associated with at least three episodes of deformation. Global Positioning System data for the same region reveal a gradual decrease in horizontal surface velocities from the Eastern Cordillera toward the foreland, which contrasts with the rapid velocity gradient associated with a locked decollement in the Subandean Ranges of southern Bolivia. Our new results represent a small view of regional deformation that, when considered in combination with the shallow crustal seismicity and decadal-scale surface velocities, support the notion that strain release in NWA is associated with numerous slowly deforming structures that are distributed throughout the orogen.}, language = {en} }