@article{WeberAbuAyyashAbueladasetal.2004, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Al-Amoush, H. and Babeyko, Andrey and Bartov, Yosef and Baumann, M. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bribach, Jens and El-Kelani, R. and Forster, A. and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, U. and Garfunkel, Zvi and Grunewald, Steffen and Gotze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, S. and Hofstetter, Alfons and Jackel, K. H. and Kesten, Dagmar and Kind, Rainer and Maercklin, Nils and Mechie, James and Mohsen, Amjad and Neubauer, F. M. and Oberh{\"a}nsli, Roland and Qabbani, I. and Ritter, O. and Rumpker, G. and Rybakov, M. and Ryberg, Trond and Scherbaum, Frank and Schmidt, J. and Schulze, A. and Sobolev, Stephan Vladimir and Stiller, M. and Th,}, title = {The crustal structure of the Dead Sea Transform}, year = {2004}, abstract = {To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries}, language = {en} } @article{StillerLueckKrawczyk1997, author = {Stiller, M. and L{\"u}ck, Erika and Krawczyk, C. M.}, title = {DEKORP{\"i}s deep-seismic Transect BASIN{\"i}96 throught the north german basin : field work and data processing}, year = {1997}, language = {en} } @article{KrawczykLueckStiller1997, author = {Krawczyk, C. M. and L{\"u}ck, Erika and Stiller, M.}, title = {The structure of the North German Basin - the DEKORP-Experiment BASIN'96}, isbn = {90-73834-04-X}, year = {1997}, language = {en} } @article{StillerKrawczykLueck1997, author = {Stiller, M. and Krawczyk, C. M. and L{\"u}ck, Erika}, title = {The northern rim of the central european basin system : first results of the offshore-onshore survey BASIN{\"i}96}, year = {1997}, language = {en} } @article{LueckStillerKrawczyk1997, author = {L{\"u}ck, Erika and Stiller, M. and Krawczyk, C. M.}, title = {Wide angle seismics of Basin{\"i}96}, year = {1997}, language = {en} } @article{TejedorOriolPinoletal.2005, author = {Tejedor, R. M. and Oriol, L. and Pinol, M. and Serrano, J. L. and Strehmel, Veronika and Stiller, Burkhard and Stumpe, Joachim}, title = {Photoreactive main-chain liquid-crystalline polyesters : Synthesis, characterization, and photochemistry}, issn = {0887-624X}, year = {2005}, abstract = {Three series of semiflexible and rigid main-chain polyesters containing photoreactive mesogenic units derived from p-phenylenediacrylic acid (PDA) and cinnamic acid have been synthesized by high-temperature polycondensation. The thermal and mesomorphic properties of the polymers have been determined. The photochemical behavior of polymer P-[1]-T, which contains a PDA unit, has been studied both in solution and in films. In solution, [2+2] photocycloaddition, E/Z photoisomerization, and photo-Fries rearrangement can take place. In contrast, the dominant process in spin-coated films is the [2+2] photocycloaddition reaction, which causes crosslinking of the polymer. In films, the photochemistry and induction of anisotropy are strongly influenced by the aggregation of the PDA phenylester unit. A dichroism of about 0.2 has been induced in films by irradiation with linearly polarized UV light, and thus the capability of these films to induce optical anisotropy and align liquid crystals has been demonstrated. Liquid-crystalline cells have been made with polarized irradiated films of P[1]-T as aligning layers. A commercial liquid-crystalline mixture has been used for this study, and a similar liquid-crystalline order determined by polarized Fourier transform infrared to a commercial cell with rubbed polyimide as an aligning layer has been detected. Because of crosslinking of the irradiated P[1]-T photoaligning layer, the photoinduced anisotropy is stable at high temperatures, and the liquid-crystalline molecules are insoluble in the irradiated polymer. (c) 2005 Wiley Periodicals, Inc}, language = {en} } @article{HegewaldSchmidtGohsetal.2005, author = {Hegewald, J. and Schmidt, T. and Gohs, U. and Gunther, M. and Reichelt, R. and Stiller, Burkhard and Arndt, K. F.}, title = {Electron beam irradiation of poly(vinyl methyl ether) films : 1. Synthesis and film topography}, issn = {0743-7463}, year = {2005}, abstract = {Temperature-sensitive hydrogel layers on silicon (Si) substrates were synthesized by electron beam irradiation of spin-coated poly(vinyl methyl ether) (PVME) films. The influences of the used solvent, the polymer concentration, and the spinning velocity on the homogeneity and the thickness of the PVME film were investigated. In the range of concentration c(p) = 1-15 wt\% PVME in ethanol solution, homogeneous films with a thickness between d = 50 nm and 1.7 mu m were obtained. The films were cross-linked by electron beam irradiation under inert atmosphere and analyzed by sol-gel- analysis. The results were compared with bulkgels formed by electron beam irradiation of PVME in the dry state. The film topography was analyzed by high-resolution field emission scanning electron microscopy and atomic force microscopy. An islandlike structure in the dry, swollen, and shrunken state of the hydrogel films was observed}, language = {en} } @article{MohsenAschMechieetal.2011, author = {Mohsen, Amjad and Asch, G{\"u}nter and Mechie, James and Kind, Rainer and Hofstetter, Rami and Weber, Michael H. and Stiller, M. and Abu-Ayyash, Khalil}, title = {Crustal structure of the Dead Sea Basin (DSB) from a receiver function analysis}, series = {Geophysical journal international}, volume = {184}, journal = {Geophysical journal international}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2010.04853.x}, pages = {463 -- 476}, year = {2011}, abstract = {The Dead Sea Transform (DST) is a major left-lateral strike-slip fault that accommodates the relative motion between the African and Arabian plates, connecting a region of extension in the Red Sea to the Taurus collision zone in Turkey over a length of about 1100 km. The Dead Sea Basin (DSB) is one of the largest basins along the DST. The DSB is a morphotectonic depression along the DST, divided into a northern and a southern sub-basin, separated by the Lisan salt diapir. We report on a receiver function study of the crust within the multidisciplinary geophysical project, DEad Sea Integrated REsearch (DESIRE), to study the crustal structure of the DSB. A temporary seismic network was operated on both sides of the DSB between 2006 October and 2008 April. The aperture of the network is approximately 60 km in the E-W direction crossing the DSB on the Lisan peninsula and about 100 km in the N-S direction. Analysis of receiver functions from the DESIRE temporary network indicates that Moho depths vary between 30 and 38 km beneath the area. These Moho depth estimates are consistent with results of near-vertical incidence and wide-angle controlled-source techniques. Receiver functions reveal an additional discontinuity in the lower crust, but only in the DSB and west of it. This leads to the conclusion that the internal crustal structure east and west of the DSB is different at the present-day. However, if the 107 km left-lateral movement along the DST is taken into account, then the region beneath the DESIRE array where no lower crustal discontinuity is observed would have lain about 18 Ma ago immediately adjacent to the region under the previous DESERT array west of the DST where no lower crustal discontinuity is recognized.}, language = {en} } @article{StillerKarageorgievPerezetal.2000, author = {Stiller, Burkhard and Karageorgiev, Peter and Perez, E. and Valez, M. and Reiche, J{\"u}rgen and Prescher, Dietrich and Dietzel, Birgit and Brehmer, Ludwig}, title = {Scanning kelvin microscopy as a tool for visualisation of optically induced molecular switching in azobenzene self assembling films}, issn = {0142-2421}, year = {2000}, language = {en} } @article{StillerKoepnickMuzikanteetal.1999, author = {Stiller, Burkhard and K{\"o}pnick, Thomas and Muzikante, I. and Neilands, O. and Utinans, M. and Dubrovich, O. and Karageorgiev, Peter and Brehmer, Ludwig}, title = {Optically induced switching effect of polymer containing indandione-1,3-pyridinium betaine side chains}, issn = {0378-2271}, year = {1999}, language = {en} } @misc{MechieBenAvrahamWeberetal.2013, author = {Mechie, James and Ben-Avraham, Zvi and Weber, Michael H. and G{\"o}tze, Hans-J{\"u}rgen and Koulakov, Ivan and Mohsen, A. and Stiller, M.}, title = {The distribution of Moho depths beneath the Arabian plate and margins}, series = {TECTONOPHYSICS}, volume = {609}, journal = {TECTONOPHYSICS}, publisher = {ELSEVIER SCIENCE BV}, address = {AMSTERDAM}, issn = {0040-1951}, doi = {10.1016/j.tecto.2012.11.015}, pages = {234 -- 249}, year = {2013}, abstract = {In this study three new maps of Moho depths beneath the Arabian plate and margins are presented. The first map is based on the combined gravity model, EIGEN 06C, which includes data from satellite missions and ground-based studies, and thus covers the whole region between 31 degrees E and 60 inverted perpendicular E and between 12 degrees N and 36 degrees N. The second map is based on seismological and ground-based gravity data while the third map is based only on seismological data. Both these maps show gaps due to lack of data coverage especially in the interior of the Arabian plate. Beneath the interior of the Arabian plate the Moho lies between 32 and 45 km depth below sea level. There is a tendency for higher Pn and Sn velocities beneath the northeastern parts of the plate interior with respect to the southwestern parts of the plate interior. Across the northern, destructive margin with the Eurasian plate, the Moho depths increase to over 50 km beneath the Zagros mountains. Across the conservative western margin, the Dead Sea Transform (DST). Moho depths decrease from almost 40 km beneath the highlands east of the DST to about 21-23 km under the southeastern Mediterranean Sea. This decrease seems to be modulated by a slight depression in the Moho beneath the southern DST. The constructive southwestern and southeastern margins of the Arabian plate also show the Moho shallowing from the plate interior towards the plate boundaries. A comparison of the abruptness of the Moho shallowing between the margins of the Arabian plate, the conjugate African margin at 26 degrees N and several Atlantic margins shows a complex picture and suggests that the abruptness of the Moho shallowing may reflect fundamental differences in the original structure of the margins. (C) 2012 Elsevier B.V. All rights reserved.}, language = {en} }