@article{WeberAbuAyyashAbueladasetal.2004, author = {Weber, Michael H. and Abu-Ayyash, Khalil and Abueladas, Abdel-Rahman and Agnon, Amotz and Al-Amoush, H. and Babeyko, Andrey and Bartov, Yosef and Baumann, M. and Ben-Avraham, Zvi and Bock, G{\"u}nter and Bribach, Jens and El-Kelani, R. and Forster, A. and F{\"o}rster, Hans-J{\"u}rgen and Frieslander, U. and Garfunkel, Zvi and Grunewald, Steffen and Gotze, Hans-J{\"u}rgen and Haak, Volker and Haberland, Christian and Hassouneh, Mohammed and Helwig, S. and Hofstetter, Alfons and Jackel, K. H. and Kesten, Dagmar and Kind, Rainer and Maercklin, Nils and Mechie, James and Mohsen, Amjad and Neubauer, F. M. and Oberh{\"a}nsli, Roland and Qabbani, I. and Ritter, O. and Rumpker, G. and Rybakov, M. and Ryberg, Trond and Scherbaum, Frank and Schmidt, J. and Schulze, A. and Sobolev, Stephan Vladimir and Stiller, M. and Th,}, title = {The crustal structure of the Dead Sea Transform}, year = {2004}, abstract = {To address one of the central questions of plate tectonics-How do large transform systems work and what are their typical features?-seismic investigations across the Dead Sea Transform (DST), the boundary between the African and Arabian plates in the Middle East, were conducted for the first time. A major component of these investigations was a combined reflection/ refraction survey across the territories of Palestine, Israel and Jordan. The main results of this study are: (1) The seismic basement is offset by 3-5 km under the DST, (2) The DST cuts through the entire crust, broadening in the lower crust, (3) Strong lower crustal reflectors are imaged only on one side of the DST, (4) The seismic velocity sections show a steady increase in the depth of the crust-mantle transition (Moho) from 26 km at the Mediterranean to 39 km under the Jordan highlands, with only a small but visible, asymmetric topography of the Moho under the DST. These observations can be linked to the left-lateral movement of 105 km of the two plates in the last 17 Myr, accompanied by strong deformation within a narrow zone cutting through the entire crust. Comparing the DST and the San Andreas Fault (SAF) system, a strong asymmetry in subhorizontal lower crustal reflectors and a deep reaching deformation zone both occur around the DST and the SAF. The fact that such lower crustal reflectors and deep deformation zones are observed in such different transform systems suggests that these structures are possibly fundamental features of large transform plate boundaries}, language = {en} } @article{SchroeterRitterHolschneideretal.2016, author = {Schroeter, M-A and Ritter, M. and Holschneider, Matthias and Sturm, H.}, title = {Enhanced DySEM imaging of cantilever motion using artificial structures patterned by focused ion beam techniques}, series = {Journal of micromechanics and microengineering}, volume = {26}, journal = {Journal of micromechanics and microengineering}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0960-1317}, doi = {10.1088/0960-1317/26/3/035010}, pages = {7}, year = {2016}, abstract = {We use a dynamic scanning electron microscope (DySEM) to map the spatial distribution of the vibration of a cantilever beam. The DySEM measurements are based on variations of the local secondary electron signal within the imaging electron beam diameter during an oscillation period of the cantilever. For this reason, the surface of a cantilever without topography or material variation does not allow any conclusions about the spatial distribution of vibration due to a lack of dynamic contrast. In order to overcome this limitation, artificial structures were added at defined positions on the cantilever surface using focused ion beam lithography patterning. The DySEM signal of such high-contrast structures is strongly improved, hence information about the surface vibration becomes accessible. Simulations of images of the vibrating cantilever have also been performed. The results of the simulation are in good agreement with the experimental images.}, language = {en} } @misc{NorregaardMetzlerRitteretal.2017, author = {Norregaard, Kamilla and Metzler, Ralf and Ritter, Christine M. and Berg-Sorensen, Kirstine and Oddershede, Lene Broeng}, title = {Manipulation and Motion of Organelles and Single Molecules in Living Cells}, series = {Chemical reviews}, volume = {117}, journal = {Chemical reviews}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {0009-2665}, doi = {10.1021/acs.chemrev.6b00638}, pages = {4342 -- 4375}, year = {2017}, abstract = {The biomolecule is among the most important building blocks of biological systems, and a full understanding of its function forms the scaffold for describing the mechanisms of higher order structures as organelles and cells. Force is a fundamental regulatory mechanism of biomolecular interactions driving many cellular processes. The forces on a molecular scale are exactly in the range that can be manipulated and probed with single molecule force spectroscopy. The natural environment of a biomolecule is inside a living cell, hence, this is the most relevant environment for probing their function. In vivo studies are, however, challenged by the complexity of the cell. In this review, we start with presenting relevant theoretical tools for analyzing single molecule data obtained in intracellular environments followed by a description of state-of-the art visualization techniques. The most commonly used force spectroscopy techniques, namely optical tweezers, magnetic tweezers, and atomic force microscopy, are described in detail, and their strength and limitations related to in vivo experiments are discussed. Finally, recent exciting discoveries within the field of in vivo manipulation and dynamics of single molecule and organelles are reviewed.}, language = {en} } @article{RitterAngelesBurgosBoeckmannetal.2018, author = {Ritter, Christoph and {\´A}ngeles Burgos, Mar{\´i}a and B{\"o}ckmann, Christine and Mateos, David and Lisok, Justyna and Markowicz, Krzysztof M. and Moroni, Beatrice and Cappelletti, David and Udisti, Roberto and Maturilli, Marion and Neuber, Roland}, title = {Microphysical properties and radiative impact of an intense biomass burning aerosol event measured over Ny-angstrom lesund, Spitsbergen in July 2015}, series = {Tellus - Series B, Chemical and Physical Meteorology}, volume = {70}, journal = {Tellus - Series B, Chemical and Physical Meteorology}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1600-0889}, doi = {10.1080/16000889.2018.1539618}, pages = {23}, year = {2018}, abstract = {In this work, an evaluation of an intense biomass burning event observed over Ny-angstrom lesund (Spitsbergen, European Arctic) in July 2015 is presented. Data from the multi-wavelengths Raman-lidar KARL, a sun photometer and radiosonde measurements are used to derive some microphysical properties of the biomass burning aerosol as size distribution, refractive index and single scattering albedo at different relative humidities. Predominantly particles in the accumulation mode have been found with a bi-modal distribution and dominance of the smaller mode. Above 80\% relative humidity, hygroscopic growth in terms of an increase of particle diameter and a slight decrease of the index of refraction (real and imaginary part) has been found. Values of the single scattering albedo around 0.9 both at 355nm and 532nm indicate some absorption by the aerosol. Values of the lidar ratio are around 26sr for 355nm and around 50sr for 532nm, almost independent of the relative humidity. Further, data from the photometer and surface radiation values from the local baseline surface radiation network (BSRN) have been applied to derive the radiative impact of the biomass burning event purely from observational data by comparison with a clear background day. We found a strong cooling for the visible radiation and a slight warming in the infra-red. The net aerosol forcing, derived by comparison with a clear background day purely from observational data, obtained a value of -95 W/m(2) per unit AOD500.}, language = {en} } @article{ArayaVargasMeqbelRitteretal.2019, author = {Araya Vargas, Jaime Andr{\´e}s and Meqbel, Naser M. and Ritter, Oliver and Brasse, H. and Weckmann, Ute and Yanez, Gonzalo and Godoy, B.}, title = {Fluid Distribution in the Central Andes Subduction Zone Imaged With Magnetotellurics}, series = {Journal of geophysical research : Solid earth}, volume = {124}, journal = {Journal of geophysical research : Solid earth}, number = {4}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9313}, doi = {10.1029/2018JB016933}, pages = {4017 -- 4034}, year = {2019}, abstract = {We present a model of the electrical resistivity structure of the lithosphere in the Central Andes between 20 degrees and 24 degrees S from 3-D inversion of 56 long-period magnetotelluric sites. Our model shows a complex resistivity structure with significant variability parallel and perpendicular to the trench direction. The continental forearc is characterized mainly by high electrical resistivity (>1,000m), suggesting overall low volumes of fluids. However, low resistivity zones (LRZs, <5m) were found in the continental forearc below areas where major trench-parallel faults systems intersect NW-SE transverse faults. Forearc LRZs indicate circulation and accumulation of fluids in highly permeable fault zones. The continental crust along the arc shows three distinctive resistivity domains, which coincide with segmentation in the distribution of volcanoes. The northern domain (20 degrees-20.5 degrees S) is characterized by resistivities >1,000m and the absence of active volcanism, suggesting the presence of a low-permeability block in the continental crust. The central domain (20.5 degrees-23 degrees S) exhibits a number of LRZs at varying depths, indicating different levels of a magmatic plumbing system. The southern domain (23 degrees-24 degrees S) is characterized by resistivities >1,000m, suggesting the absence of large magma reservoirs below the volcanic chain at crustal depths. Magma reservoirs located below the base of the crust or in the backarc may fed active volcanism in the southern domain. In the subcontinental mantle, the model exhibits LRZs in the forearc mantle wedge and above clusters of intermediate-depth seismicity, likely related to fluids produced by serpentinization of the mantle and eclogitization of the slab, respectively.}, language = {en} } @article{CrucesZabalaRitterWeckmannetal.2022, author = {Cruces-Zabala, Jos{\´e} Alejandro and Ritter, Oliver and Weckmann, Ute and Tietze, Kristina and Meqbel, Naser M. and Audemard, Franck and Schmitz, Michael}, title = {Three-dimensional magnetotelluric imaging of the Merida Andes, Venezuela}, series = {Journal of South American earth sciences}, volume = {114}, journal = {Journal of South American earth sciences}, publisher = {Elsevier}, address = {Oxford}, issn = {0895-9811}, doi = {10.1016/j.jsames.2022.103711}, pages = {17}, year = {2022}, abstract = {The 100 km wide Merida Andes extend from the Colombian/Venezuelan border to the Coastal Cordillera. The mountain chain and its associated major strike-slip fault systems in western Venezuela formed due to oblique convergence of the Caribbean with the South American Plates and the north-eastwards expulsion of the North Andean Block. Due to the limited knowledge of lithospheric structures related to the formation of the Merida Andes research projects have been developed to illuminate this zone with deep geophysical data. In this study, we present three-dimensional inversion of broadband magnetotelluric data, collected along a 240 km long profile crossing the Merida Andes and the Maracaibo and Barinas-Apure foreland basins. The distribution of the stations limits resolution of the model to off-profile features. Combining 3D inversion of synthetic data sets derived from 3D modelling with 3D inversion of measured data, we could derive a 10 to 15 km wide corridor with good lateral resolution to develop hypotheses about the origin of deep-reaching anomalies of high electrical conductivity. The Merida Andes appear generally as electrically resistive structures, separated by anomalies associated with the most important fault systems of the region, the Bocono and Valera faults. Sensitivity tests suggest that the Valera Fault reaches to depths of up to 12 km and the Bocono Fault to more than 35 km depth. Both structures are connected to a sizeable conductor located east of the profile at 12-15 km depth. We propose that the high conductivity associated with this off-profile conductor may be related to the detachment of the Trujillo Block. We also identified a conductive zone that correlates spatially with the location of a gravity low, possibly representing a SE tilt of the Maracaibo Triangular Block under the mountain chain to great depths (>30 km). The relevance of these tectonic blocks in our models at crustal depths seems to be consistent with proposed theories that describe the geodynamics of western Venezuela as dominated by floating blocks or orogens. Our results stress the importance of the Trujillo Block for the current tectonic evolution of western Venezuela and confirm the relevance of the Bocono Fault carrying deformation to the lower crust and upper mantle. The Barinas-Apure and the Maracaibo sedimentary basins are imaged as electrically conductive with depths of 4 to 5 km and 5 to 10 km, respectively. The Barinas-Apure basin is imaged as a simple 1D structure, in contrast to the Maracaibo Basin, where a series of conductive and resistive bodies could be related to active deformation causing the juxtaposition of older geological formations and younger basin sediments.}, language = {en} }