@article{KocReinhardtvonReppertetal.2017, author = {Koc, A. and Reinhardt, M. and von Reppert, Alexander and R{\"o}ssle, Matthias and Leitenberger, Wolfram and Gleich, M. and Weinelt, M. and Zamponi, Flavio and Bargheer, Matias}, title = {Grueneisen-approach for the experimental determination of transient spin and phonon energies from ultrafast x-ray diffraction data: gadolinium}, series = {Journal of physics : Condensed matter}, volume = {29}, journal = {Journal of physics : Condensed matter}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-8984}, doi = {10.1088/1361-648X/aa7187}, pages = {5884 -- 5891}, year = {2017}, abstract = {We study gadolinium thin films as a model system for ferromagnets with negative thermal expansion. Ultrashort laser pulses heat up the electronic subsystem and we follow the transient strain via ultrafast x-ray diffraction. In terms of a simple Grueneisen approach, the strain is decomposed into two contributions proportional to the thermal energy of spin and phonon subsystems. Our analysis reveals that upon femtosecond laser excitation, phonons and spins can be driven out of thermal equilibrium for several nanoseconds.}, language = {en} } @article{vonReppertPuddellKocetal.2016, author = {von Reppert, Alexander and Puddell, J. and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, series = {Structural dynamics}, volume = {3}, journal = {Structural dynamics}, publisher = {AIP Publishing LLC}, address = {Melville, NY}, issn = {2329-7778}, doi = {10.1063/1.4961253}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the N{\´e}el temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.}, language = {en} } @misc{vonReppertPuddellKocetal.2016, author = {von Reppert, Alexander and Puddell, J. and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-98710}, pages = {11}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the N{\´e}el temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost.}, language = {en} } @article{ReinhardtLierschAbdeladhimetal.2018, author = {Reinhardt, Julia and Liersch, Stefan and Abdeladhim, Mohamed Arbi and Diallo, Mori and Dickens, Chris and Fournet, Samuel and Hattermann, Fred Fokko and Kabaseke, Clovis and Muhumuza, Moses and Mul, Marloes L. and Pilz, Tobias and Otto, Ilona M. and Walz, Ariane}, title = {Systematic evaluation of scenario assessments supporting sustainable integrated natural resources management}, series = {Ecology and society : a journal of integrative science for resilience and sustainability}, volume = {23}, journal = {Ecology and society : a journal of integrative science for resilience and sustainability}, number = {1}, publisher = {Resilience Alliance}, address = {Wolfville}, issn = {1708-3087}, doi = {10.5751/ES-09728-230105}, pages = {34}, year = {2018}, abstract = {Scenarios have become a key tool for supporting sustainability research on regional and global change. In this study we evaluate four regional scenario assessments: first, to explore a number of research challenges related to sustainability science and, second, to contribute to sustainability research in the specific case studies. The four case studies used commonly applied scenario approaches that are (i) a story and simulation approach with stakeholder participation in the Oum Zessar watershed, Tunisia, (ii) a participatory scenario exploration in the Rwenzori region, Uganda, (iii) a model-based prepolicy study in the Inner Niger Delta, Mali, and (iv) a model coupling-based scenario analysis in upper Thukela basin, South Africa. The scenario assessments are evaluated against a set of known challenges in sustainability science, with each challenge represented by two indicators, complemented by a survey carried out on the perception of the scenario assessments within the case study regions. The results show that all types of scenario assessments address many sustainability challenges, but that the more complex ones based on story and simulation and model coupling are the most comprehensive. The study highlights the need to investigate abrupt system changes as well as governmental and political factors as important sources of uncertainty. For an in-depth analysis of these issues, the use of qualitative approaches and an active engagement of local stakeholders are suggested. Studying ecological thresholds for the regional scale is recommended to support research on regional sustainability. The evaluation of the scenario processes and outcomes by local researchers indicates the most transparent scenario assessments as the most useful. Focused, straightforward, yet iterative scenario assessments can be very relevant by contributing information to selected sustainability problems.}, language = {en} } @article{IurchukSchickBranetal.2016, author = {Iurchuk, V. and Schick, D. and Bran, J. and Colson, D. and Forget, A. and Halley, D. and Koc, Azize and Reinhardt, Mathias and Kwamen, C. and Morley, N. A. and Bargheer, Matias and Viret, M. and Gumeniuk, R. and Schmerber, G. and Doudin, B. and Kundys, B.}, title = {Optical Writing of Magnetic Properties by Remanent Photostriction}, series = {Physical review letters}, volume = {117}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.117.107403}, pages = {5}, year = {2016}, abstract = {We present an optically induced remanent photostriction in BiFeO3, resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO3/Ni structure. The 75\% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO3. Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications.}, language = {en} } @article{vonReppertPudellKocetal.2016, author = {von Reppert, Alexander and Pudell, Jan-Etienne and Koc, A. and Reinhardt, M. and Leitenberger, Wolfram and Dumesnil, K. and Zamponi, Flavio and Bargheer, Matias}, title = {Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet}, series = {Structural dynamics}, volume = {3}, journal = {Structural dynamics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4961253}, pages = {11}, year = {2016}, abstract = {We present a temperature and fluence dependent Ultrafast X-Ray Diffraction study of a laser-heated antiferromagnetic dysprosium thin film. The loss of antiferromagnetic order is evidenced by a pronounced lattice contraction. We devise a method to determine the energy flow between the phonon and spin system from calibrated Bragg peak positions in thermal equilibrium. Reestablishing the magnetic order is much slower than the cooling of the lattice, especially around the Neel temperature. Despite the pronounced magnetostriction, the transfer of energy from the spin system to the phonons in Dy is slow after the spin-order is lost. (C) 2016 Author(s).}, language = {en} } @article{KocReinhardtvonReppertetal.2017, author = {Koc, Azize and Reinhardt, M. and von Reppert, Alexander and Roessle, Matthias and Leitenberger, Wolfram and Dumesnil, K. and Gaal, Peter and Zamponi, Flavio and Bargheer, Matias}, title = {Ultrafast x-ray diffraction thermometry measures the influence of spin excitations on the heat transport through nanolayers}, series = {Physical review : B, Condensed matter and materials physics}, volume = {96}, journal = {Physical review : B, Condensed matter and materials physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.96.014306}, pages = {7}, year = {2017}, abstract = {We investigate the heat transport through a rare earth multilayer system composed of yttrium (Y), dysprosium (Dy), and niobium (Nb) by ultrafast x-ray diffraction. This is an example of a complex heat flow problem on the nanoscale, where several different quasiparticles carry the heat and conserve a nonequilibrium for more than 10 ns. The Bragg peak positions of each layer represent layer-specific thermometers that measure the energy flow through the sample after excitation of the Y top layer with fs-laser pulses. In an experiment-based analytic solution to the nonequilibrium heat transport problem, we derive the individual contributions of the spins and the coupled electron-lattice system to the heat conduction. The full characterization of the spatiotemporal energy flow at different starting temperatures reveals that the spin excitations of antiferromagnetic Dy speed up the heat transport into the Dy layer at low temperatures, whereas the heat transport through this layer and further into the Y and Nb layers underneath is slowed down. The experimental findings are compared to the solution of the heat equation using macroscopic temperature-dependent material parameters without separation of spin and phonon contributions to the heat. We explain why the simulated energy density matches our experiment-based derivation of the heat transport, although the simulated thermoelastic strain in this simulation is not even in qualitative agreement.}, language = {en} } @article{KwamenRoessleReinhardtetal.2017, author = {Kwamen, C. and R{\"o}ssle, Matthias and Reinhardt, M. and Leitenberger, Wolfram and Zamponi, Flavio and Alexe, Marin and Bargheer, Matias}, title = {Simultaneous dynamic characterization of charge and structural motion during ferroelectric switching}, series = {Physical review : B, Condensed matter and materials physics}, volume = {96}, journal = {Physical review : B, Condensed matter and materials physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9950}, doi = {10.1103/PhysRevB.96.134105}, pages = {6}, year = {2017}, abstract = {Monitoring structural changes in ferroelectric thin films during electric field induced polarization switching is important for a full microscopic understanding of the coupled motion of charges, atoms, and domainwalls in ferroelectric nanostructures. We combine standard ferroelectric test sequences of switching and nonswitching electrical pulses with time-resolved x-ray diffraction to investigate the structural response of a nanoscale Pb(Zr0.2Ti0.8)O-3 ferroelectric oxide capacitor upon charging, discharging, and polarization reversal. We observe that a nonlinear piezoelectric response of the ferroelectric layer develops on a much longer time scale than the RC time constant of the device. The complex atomic motion during the ferroelectric polarization reversal starts with a contraction of the lattice, whereas the expansive piezoelectric response sets in after considerable charge flow due to the applied voltage pulses on the electrodes of the capacitor. Our simultaneous measurements on a working device elucidate and visualize the complex interplay of charge flow and structural motion and challenges theoretical modeling.}, language = {en} } @book{RaithRaaseReinhardt2011, author = {Raith, Michael M. and Raase, Peter and Reinhardt, J{\"u}rgen}, title = {Leitfaden zur D{\"u}nnschliffmikroskopie}, isbn = {978-3-00-036420-4}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-bbdig-252}, publisher = {Universit{\"a}t Potsdam}, pages = {IV, 125}, year = {2011}, language = {de} } @book{RaithRaaseReinhardt2011, author = {Raith, Michael M. and Raase, Peter and Reinhardt, J{\"u}rgen}, title = {Leitfaden zur D{\"u}nnschliffmikroskopie}, isbn = {978-3-00-036420-4}, doi = {10.25932/publishup-59930}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-599301}, publisher = {Universit{\"a}t Potsdam}, pages = {IV, 125}, year = {2011}, language = {de} }