@article{WarringtonBeaumontHorikoshietal.2019, author = {Warrington, Nicole and Beaumont, Robin and Horikoshi, Momoko and Day, Felix R. and Helgeland, {\O}yvind and Laurin, Charles and Bacelis, Jonas and Peng, Shouneng and Hao, Ke and Feenstra, Bjarke and Wood, Andrew R. and Mahajan, Anubha and Tyrrell, Jessica and Robertson, Neil R. and Rayner, N. William and Qiao, Zhen and Moen, Gunn-Helen and Vaudel, Marc and Marsit, Carmen and Chen, Jia and Nodzenski, Michael and Schnurr, Theresia M. and Zafarmand, Mohammad Hadi and Bradfield, Jonathan P. and Grarup, Niels and Kooijman, Marjolein N. and Li-Gao, Ruifang and Geller, Frank and Ahluwalia, Tarunveer Singh and Paternoster, Lavinia and Rueedi, Rico and Huikari, Ville and Hottenga, Jouke-Jan and Lyytik{\"a}inen, Leo-Pekka and Cavadino, Alana and Metrustry, Sarah and Cousminer, Diana L. and Wu, Ying and Thiering, Elisabeth Paula and Wang, Carol A. and Have, Christian Theil and Vilor-Tejedor, Natalia and Joshi, Peter K. and Painter, Jodie N. and Ntalla, Ioanna and Myhre, Ronny and Pitk{\"a}nen, Niina and van Leeuwen, Elisabeth M. and Joro, Raimo and Lagou, Vasiliki and Richmond, Rebecca C. and Espinosa, Ana and Barton, Sheila J. and Inskip, Hazel M. and Holloway, John W. and Santa-Marina, Loreto and Estivill, Xavier and Ang, Wei and Marsh, Julie A. and Reichetzeder, Christoph and Marullo, Letizia and Hocher, Berthold and Lunetta, Kathryn L. and Murabito, Joanne M. and Relton, Caroline L. and Kogevinas, Manolis and Chatzi, Leda and Allard, Catherine and Bouchard, Luigi and Hivert, Marie-France and Zhang, Ge and Muglia, Louis J. and Heikkinen, Jani and Morgen, Camilla S. and van Kampen, Antoine H. C. and van Schaik, Barbera D. C. and Mentch, Frank D. and Langenberg, Claudia and Scott, Robert A. and Zhao, Jing Hua and Hemani, Gibran and Ring, Susan M. and Bennett, Amanda J. and Gaulton, Kyle J. and Fernandez-Tajes, Juan and van Zuydam, Natalie R. and Medina-Gomez, Carolina and de Haan, Hugoline G. and Rosendaal, Frits R. and Kutalik, Zolt{\´a}n and Marques-Vidal, Pedro and Das, Shikta and Willemsen, Gonneke and Mbarek, Hamdi and M{\"u}ller-Nurasyid, Martina and Standl, Marie and Appel, Emil V. R. and Fonvig, Cilius Esmann and Trier, Caecilie and van Beijsterveldt, Catharina E. M. and Murcia, Mario and Bustamante, Mariona and Bon{\`a}s-Guarch, S{\´i}lvia and Hougaard, David M. and Mercader, Josep M. and Linneberg, Allan and Schraut, Katharina E. and Lind, Penelope A. and Medland, Sarah Elizabeth and Shields, Beverley M. and Knight, Bridget A. and Chai, Jin-Fang and Panoutsopoulou, Kalliope and Bartels, Meike and S{\´a}nchez, Friman and Stokholm, Jakob and Torrents, David and Vinding, Rebecca K. and Willems, Sara M. and Atalay, Mustafa and Chawes, Bo L. and Kovacs, Peter and Prokopenko, Inga and Tuke, Marcus A. and Yaghootkar, Hanieh and Ruth, Katherine S. and Jones, Samuel E. and Loh, Po-Ru and Murray, Anna and Weedon, Michael N. and T{\"o}njes, Anke and Stumvoll, Michael and Michaelsen, Kim Fleischer and Eloranta, Aino-Maija and Lakka, Timo A. and van Duijn, Cornelia M. and Kiess, Wieland and Koerner, Antje and Niinikoski, Harri and Pahkala, Katja and Raitakari, Olli T. and Jacobsson, Bo and Zeggini, Eleftheria and Dedoussis, George V. and Teo, Yik-Ying and Saw, Seang-Mei and Montgomery, Grant W. and Campbell, Harry and Wilson, James F. and Vrijkotte, Tanja G. M. and Vrijheid, Martine and de Geus, Eco J. C. N. and Hayes, M. Geoffrey and Kadarmideen, Haja N. and Holm, Jens-Christian and Beilin, Lawrence J. and Pennell, Craig E. and Heinrich, Joachim and Adair, Linda S. and Borja, Judith B. and Mohlke, Karen L. and Eriksson, Johan G. and Widen, Elisabeth E. and Hattersley, Andrew T. and Spector, Tim D. and Kaehoenen, Mika and Viikari, Jorma S. and Lehtimaeki, Terho and Boomsma, Dorret I. and Sebert, Sylvain and Vollenweider, Peter and Sorensen, Thorkild I. A. and Bisgaard, Hans and Bonnelykke, Klaus and Murray, Jeffrey C. and Melbye, Mads and Nohr, Ellen A. and Mook-Kanamori, Dennis O. and Rivadeneira, Fernando and Hofman, Albert and Felix, Janine F. and Jaddoe, Vincent W. V. and Hansen, Torben and Pisinger, Charlotta and Vaag, Allan A. and Pedersen, Oluf and Uitterlinden, Andre G. and Jarvelin, Marjo-Riitta and Power, Christine and Hypponen, Elina and Scholtens, Denise M. and Lowe, William L. and Smith, George Davey and Timpson, Nicholas J. and Morris, Andrew P. and Wareham, Nicholas J. and Hakonarson, Hakon and Grant, Struan F. A. and Frayling, Timothy M. and Lawlor, Debbie A. and Njolstad, Pal R. and Johansson, Stefan and Ong, Ken K. and McCarthy, Mark I. and Perry, John R. B. and Evans, David M. and Freathy, Rachel M.}, title = {Maternal and fetal genetic effects on birth weight and their relevance to cardio-metabolic risk factors}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {EGG Consortium}, issn = {1061-4036}, pages = {804 -- +}, year = {2019}, abstract = {Birth weight variation is influenced by fetal and maternal genetic and non-genetic factors, and has been reproducibly associated with future cardio-metabolic health outcomes. In expanded genome-wide association analyses of own birth weight (n = 321,223) and offspring birth weight (n = 230,069 mothers), we identified 190 independent association signals (129 of which are novel). We used structural equation modeling to decompose the contributions of direct fetal and indirect maternal genetic effects, then applied Mendelian randomization to illuminate causal pathways. For example, both indirect maternal and direct fetal genetic effects drive the observational relationship between lower birth weight and higher later blood pressure: maternal blood pressure-raising alleles reduce offspring birth weight, but only direct fetal effects of these alleles, once inherited, increase later offspring blood pressure. Using maternal birth weight-lowering genotypes to proxy for an adverse intrauterine environment provided no evidence that it causally raises offspring blood pressure, indicating that the inverse birth weight-blood pressure association is attributable to genetic effects, and not to intrauterine programming.}, language = {en} } @misc{AskinEmmerichFritscheGoppeletal.2012, author = {Askin, Elif and Emmerich-Fritsche, Angelika and Goppel, Anna and Hemmerling, Mario and Kapaun, Nina and Lohmann, Georg and M{\"u}ller, Sebastian and Niederberger, Andreas and Pabel, Katharina and Putzer, Max and Roth-Isigkeit, David and Seidler, Christoph and Tiedemann, Paul and Vasel, J. Justus and Weiß, Norman}, title = {MenschenRechtsMagazin : Informationen | Meinungen | Analysen}, volume = {17}, number = {2}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1434-2820}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62122}, year = {2012}, abstract = {Aus dem Inhalt: - Themenschwerpunkt: Menschenrechte und Staatsb{\"u}rgerschaft - Gibt es Menschenrechte ohne B{\"u}rgerschaft? - Menschenw{\"u}rde und Staatsb{\"u}rgerschaft - Die General Comments des Menschenrechtsausschusses der Vereinten Nationen - ein Beitrag zur Rechtsentwicklung im V{\"o}lkerrecht - Politische Selbstbestimmung als Menschenrecht und im V{\"o}lkerrecht - Libyen und der von außen unterst{\"u}tzte Systemwechsel}, language = {de} } @article{Mueller2005, author = {M{\"u}ller, Mario}, title = {Bischof Dietrich von Stechow : zur F{\"o}rderung der Fr{\"o}mmigkeit}, year = {2005}, language = {de} } @article{FranzOstOttenetal.2018, author = {Franz, Kristina and Ost, Mario and Otten, Lindsey and Herpich, Catrin and Coleman, Verena and Endres, Anne-Sophie and Klaus, Susanne and M{\"u}ller-Werdan, Ursula and Norman, Kristina}, title = {Higher serum levels of fibroblast growth factor 21 in old patients with cachexia}, series = {Nutrition : the international journal of applied and basic nutritional sciences}, volume = {63-64}, journal = {Nutrition : the international journal of applied and basic nutritional sciences}, publisher = {Elsevier}, address = {New York}, issn = {0899-9007}, doi = {10.1016/j.nut.2018.11.004}, pages = {81 -- 86}, year = {2018}, abstract = {Objective: Fibroblast growth factor (FGF)21 is promptly induced by short fasting in animal models to regulate glucose and fat metabolism. Data on FGF21 in humans are inconsistent and FGF21 has not yet been investigated in old patients with cachexia, a complex syndrome characterized by inflammation and weight loss. The aim of this study was to explore the association of FGF21 with cachexia in old patients compared with their healthy counterparts. Methods: Serum FGF21 and its inactivating enzyme fibroblast activation protein (FAP)-cc were measured with enzyme-linked immunoassays. Cachexia was defined as >= 5\% weight loss in the previous 3 mo and concurrent anorexia (Council on Nutrition appetite questionnaire). Results: We included 103 patients with and without cachexia (76.9 +/- 5.2 y of age) and 56 healthy controls (72.9 +/- 5.9 y of age). Cachexia was present in 16.5\% of patients. These patients had significantly higher total FGF21 levels than controls (952.1 +/- 821.3 versus 525.2 +/- 560.3 pg/mL; P= 0.012) and the lowest FGF21 levels (293.3 +/- 150.9 pg/mL) were found in the control group (global P < 0.001). Although FAP-alpha did not differ between the three groups (global P = 0.082), bioactive FGF21 was significantly higher in patients with cachexia (global P = 0.002). Risk factor-adjusted regression analyses revealed a significant association between cachexia and total ((beta = 649.745 pg/mL; P < 0.001) and bioactive FGF21 (beta = 393.200 pg/mL; P <0.001), independent of sex, age, and body mass index. Conclusions: Patients with cachexia exhibited the highest FGF21 levels. Clarification is needed to determine whether this is an adaptive response to nutrient deprivation in disease-related cachexia or whether the increased FGF21 values contribute to the catabolic state. (C) 2018 Elsevier Inc. All rights reserved.}, language = {en} } @book{HeimannLangnerMuelleretal.2007, author = {Heimann, Heinz-Dieter and Langner, Martin M. and M{\"u}ller, Mario and Zacke, Birgit}, title = {Weltbilder des mittelalterlichen Menschen}, series = {Studium Litterarum : Studien und Texte zur deutschen Literaturgeschichte}, volume = {12}, journal = {Studium Litterarum : Studien und Texte zur deutschen Literaturgeschichte}, publisher = {Weidler}, address = {Berlin}, isbn = {978-3-89693-476-5}, pages = {335 S.}, year = {2007}, language = {de} } @book{BergstedtHeimannKiesantetal.2011, author = {Bergstedt, Clemens and Heimann, Heinz-Dieter and Kiesant, Kurt and Kn{\"u}vener, Peter and M{\"u}ller, Mario and Winkler, Kurt}, title = {Im Dialog mit Raubrittern und Sch{\"o}nen Madonnen : die Mark Brandenburg im sp{\"a}ten Mittelalter}, series = {Studien zur brandenburgischen und vergleichenden Landesgeschichte}, volume = {6}, journal = {Studien zur brandenburgischen und vergleichenden Landesgeschichte}, publisher = {Lukas-Verl.}, address = {Berlin}, isbn = {978-3-86732-118-1}, year = {2011}, language = {de} } @article{WienholdMacriNouaillesetal.2018, author = {Wienhold, Sandra-Maria and Macri, Mario and Nouailles, Geraldine and Dietert, Kristina and Gurtner, Corinne and Gruber, Achim D. and Heimesaat, Markus M. and Lienau, Jasmin and Schumacher, Fabian and Kleuser, Burkhard and Opitz, Bastian and Suttorp, Norbert and Witzenrath, Martin and M{\"u}ller-Redetzky, Holger C.}, title = {Ventilator-induced lung injury is aggravated by antibiotic mediated microbiota depletion in mice}, series = {Critical Care}, volume = {22}, journal = {Critical Care}, number = {282}, publisher = {BMC}, address = {London}, issn = {1466-609X}, doi = {10.1186/s13054-018-2213-8}, pages = {12}, year = {2018}, abstract = {BackgroundAntibiotic exposure alters the microbiota, which can impact the inflammatory immune responses. Critically ill patients frequently receive antibiotic treatment and are often subjected to mechanical ventilation, which may induce local and systemic inflammatory responses and development of ventilator-induced lung injury (VILI). The aim of this study was to investigate whether disruption of the microbiota by antibiotic therapy prior to mechanical ventilation affects pulmonary inflammatory responses and thereby the development of VILI.MethodsMice underwent 6-8weeks of enteral antibiotic combination treatment until absence of cultivable bacteria in fecal samples was confirmed. Control mice were housed equally throughout this period. VILI was induced 3 days after completing the antibiotic treatment protocol, by high tidal volume (HTV) ventilation (34ml/kg; positive end-expiratory pressure=2 cmH(2)O) for 4h. Differences in lung function, oxygenation index, pulmonary vascular leakage, macroscopic assessment of lung injury, and leukocyte and lymphocyte differentiation were assessed. Control groups of mice ventilated with low tidal volume and non-ventilated mice were analyzed accordingly.ResultsAntibiotic-induced microbiota depletion prior to HTV ventilation led to aggravation of VILI, as shown by increased pulmonary permeability, increased oxygenation index, decreased pulmonary compliance, enhanced macroscopic lung injury, and increased cytokine/chemokine levels in lung homogenates.ConclusionsDepletion of the microbiota by broad-spectrum antibiotics prior to HTV ventilation renders mice more susceptible to developing VILI, which could be clinically relevant for critically ill patients frequently receiving broad-spectrum antibiotics.}, language = {en} }