@article{HuangStoofLeichsenringLiuetal.2021, author = {Huang, Sichao and Stoof-Leichsenring, Kathleen R. and Liu, Sisi and Courtin, Jeremy and Andreev, Andrej A. and Pestryakova, Luidmila. A. and Herzschuh, Ulrike}, title = {Plant sedimentary ancient DNA from Far East Russia covering the last 28,000 years reveals different assembly rules in cold and warm climates}, series = {Frontiers in Ecology and Evolution}, volume = {9}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2021.763747}, pages = {15}, year = {2021}, abstract = {Woody plants are expanding into the Arctic in response to the warming climate. The impact on arctic plant communities is not well understood due to the limited knowledge about plant assembly rules. Records of past plant diversity over long time series are rare. Here, we applied sedimentary ancient DNA metabarcoding targeting the P6 loop of the chloroplast trnL gene to a sediment record from Lake Ilirney (central Chukotka, Far Eastern Russia) covering the last 28 thousand years. Our results show that forb-rich steppe-tundra and dwarf-shrub tundra dominated during the cold climate before 14 ka, while deciduous erect-shrub tundra was abundant during the warm period since 14 ka. Larix invasion during the late Holocene substantially lagged behind the likely warmest period between 10 and 6 ka, where the vegetation biomass could be highest. We reveal highest richness during 28-23 ka and a second richness peak during 13-9 ka, with both periods being accompanied by low relative abundance of shrubs. During the cold period before 14 ka, rich plant assemblages were phylogenetically clustered, suggesting low genetic divergence in the assemblages despite the great number of species. This probably originates from environmental filtering along with niche differentiation due to limited resources under harsh environmental conditions. In contrast, during the warmer period after 14 ka, rich plant assemblages were phylogenetically overdispersed. This results from a high number of species which were found to harbor high genetic divergence, likely originating from an erratic recruitment process in the course of warming. Some of our evidence may be of relevance for inferring future arctic plant assembly rules and diversity changes. By analogy to the past, we expect a lagged response of tree invasion. Plant richness might overshoot in the short term; in the long-term, however, the ongoing expansion of deciduous shrubs will eventually result in a phylogenetically more diverse community.}, language = {en} } @article{BiskabornSubettoSavelievaetal.2016, author = {Biskaborn, Boris and Subetto, D. A. and Savelieva, L. A. and Vakhrameeva, P. S. and Hansche, A. and Herzschuh, Ulrike and Klemm, J. and Heinecke, L. and Pestryakova, Luidmila Agafyevna and Meyer, H. and Kuhn, G. and Diekmann, Bernhard}, title = {Late Quaternary vegetation and lake system dynamics in north-eastern Siberia: Implications for seasonal climate variability}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {147}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2015.08.014}, pages = {406 -- 421}, year = {2016}, abstract = {Although the climate development over the Holocene in the Northern Hemisphere is well known, palaeolimnological climate reconstructions reveal spatiotemporal variability in northern Eurasia. Here we present a multi-proxy study from north-eastern Siberia combining sediment geochemistry, and diatom and pollen data from lake-sediment cores covering the last 38,000 cal. years. Our results show major changes in pyrite content and fragilarioid diatom species distributions, indicating prolonged seasonal lake-ice cover between similar to 13,500 and similar to 8900 cal. years BP and possibly during the 8200 cal. years BP cold event. A pollen-based climate reconstruction generated a mean July temperature of 17.8 degrees C during the Holocene Thermal Maximum (HTM) between similar to 8900 and similar to 4500 cal. years BP. Naviculoid diatoms appear in the late Holocene indicating a shortening of the seasonal ice cover that continues today. Our results reveal a strong correlation between the applied terrestrial and aquatic indicators and natural seasonal climate dynamics in the Holocene. Planktonic diatoms show a strong response to changes in the lake ecosystem due to recent climate warming in the Anthropocene. We assess other palaeolimnological studies to infer the spatiotemporal pattern of the HTM and affirm that the timing of its onset, a difference of up to 3000 years from north to south, can be well explained by climatic teleconnections. The westerlies brought cold air to this part of Siberia until the Laurentide ice sheet vanished 7000 years ago. The apparent delayed ending of the HTM in the central Siberian record can be ascribed to the exceedance of ecological thresholds trailing behind increases in winter temperatures and decreases in contrast in insolation between seasons during the mid to late Holocene as well as lacking differentiation between summer and winter trends in paleolimnological reconstructions. (C) 2015 Elsevier Ltd. All rights reserved.}, language = {en} } @misc{SubettoNazarovaPestryakovaetal.2017, author = {Subetto, D. A. and Nazarova, Larisa B. and Pestryakova, Luidmila Agafyevna and Syrykh, Liudmila and Andronikov, A. V. and Biskaborn, Boris and Diekmann, Bernhard and Kuznetsov, D. D. and Sapelko, T. V. and Grekov, I. M.}, title = {Paleolimnological studies in Russian northern Eurasia}, series = {Contemporary Problems of Ecology}, volume = {10}, journal = {Contemporary Problems of Ecology}, publisher = {Pleiades Publ.}, address = {New York}, issn = {1995-4255}, doi = {10.1134/S1995425517040102}, pages = {327 -- 335}, year = {2017}, abstract = {This article presents a review of the current data on the level of paleolimnological knowledge about lakes in the Russian part of the northern Eurasia. The results of investigation of the northwestern European part of Russia as the best paleolimnologically studied sector of the Russian north is presented in detail. The conditions of lacustrine sedimentation at the boundary between the Late Pleistocene and Holocene and the role of different external factors in formation of their chemical composition, including active volcanic activity and possible large meteorite impacts, are also discussed. The results of major paleoclimatic and paleoecological reconstructions in northern Siberia are presented. Particular attention is given to the databases of abiotic and biotic parameters of lake ecosystems as an important basis for quantitative reconstructions of climatic and ecological changes in the Late Pleistocene and Holocene. Keywords: paleolimnology, lakes, bottom sediments, northern.}, language = {en} } @article{StoofLeichsenringHuangLiuetal.2022, author = {Stoof-Leichsenring, Kathleen R. and Huang, Sichao and Liu, Sisi and Jia, Weihan and Li, Kai and Liu, Xingqi and Pestryakova, Luidmila A. and Herzschuh, Ulrike}, title = {Sedimentary DNA identifies modern and past macrophyte diversity and its environmental drivers in high-latitude and high-elevation lakes in Siberia and China}, series = {Limnology and oceanography}, volume = {67}, journal = {Limnology and oceanography}, number = {5}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0024-3590}, doi = {10.1002/lno.12061}, pages = {1126 -- 1141}, year = {2022}, abstract = {Arctic and alpine aquatic ecosystems are changing rapidly under recent global warming, threatening water resources by diminishing trophic status and changing biotic composition. Macrophytes play a key role in the ecology of freshwaters and we need to improve our understanding of long-term macrophytes diversity and environmental change so far limited by the sporadic presence of macrofossils in sediments. In our study, we applied metabarcoding using the trnL P6 loop marker to retrieve macrophyte richness and composition from 179 surface-sediment samples from arctic Siberian and alpine Chinese lakes and three representative lake cores. The surface-sediment dataset suggests that macrophyte richness and composition are mostly affected by temperature and conductivity, with highest richness when mean July temperatures are higher than 12 degrees C and conductivity ranges between 40 and 400 mu S cm(-1). Compositional turnover during the Late Pleistocene/Holocene is minor in Siberian cores and characterized by a less rich, but stable emergent macrophyte community. Richness decreases during the Last Glacial Maximum and rises during wetter and warmer climate in the Late-glacial and Mid-Holocene. In contrast, we detect a pronounced change from emergent to submerged taxa at 14 ka in the Tibetan alpine core, which can be explained by increasing temperature and conductivity due to glacial runoff and evaporation. Our study provides evidence for the suitability of the trnL marker to recover modern and past macrophyte diversity and its applicability for the response of macrophyte diversity to lake-hydrochemical and climate variability predicting contrasting macrophyte changes in arctic and alpine lakes under intensified warming and human impact.}, language = {en} } @article{StuenziKruseBoikeetal.2022, author = {Stuenzi, Simone Maria and Kruse, Stefan and Boike, Julia and Herzschuh, Ulrike and Oehme, Alexander and Pestryakova, Luidmila A. and Westermann, Sebastian and Langer, Moritz}, title = {Thermohydrological impact of forest disturbances on ecosystem-protected permafrost}, series = {Journal of geophysical research : Biogeosciences}, volume = {127}, journal = {Journal of geophysical research : Biogeosciences}, number = {5}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-8953}, doi = {10.1029/2021JG006630}, pages = {24}, year = {2022}, abstract = {Boreal forests cover over half of the global permafrost area and protect underlying permafrost. Boreal forest development, therefore, has an impact on permafrost evolution, especially under a warming climate. Forest disturbances and changing climate conditions cause vegetation shifts and potentially destabilize the carbon stored within the vegetation and permafrost. Disturbed permafrost-forest ecosystems can develop into a dry or swampy bush- or grasslands, shift toward broadleaf- or evergreen needleleaf-dominated forests, or recover to the pre-disturbance state. An increase in the number and intensity of fires, as well as intensified logging activities, could lead to a partial or complete ecosystem and permafrost degradation. We study the impact of forest disturbances (logging, surface, and canopy fires) on the thermal and hydrological permafrost conditions and ecosystem resilience. We use a dynamic multilayer canopy-permafrost model to simulate different scenarios at a study site in eastern Siberia. We implement expected mortality, defoliation, and ground surface changes and analyze the interplay between forest recovery and permafrost. We find that forest loss induces soil drying of up to 44\%, leading to lower active layer thicknesses and abrupt or steady decline of a larch forest, depending on disturbance intensity. Only after surface fires, the most common disturbances, inducing low mortality rates, forests can recover and overpass pre-disturbance leaf area index values. We find that the trajectory of larch forests after surface fires is dependent on the precipitation conditions in the years after the disturbance. Dryer years can drastically change the direction of the larch forest development within the studied period.}, language = {en} } @article{AndreevNazarovaLenzetal.2022, author = {Andreev, Andrei and Nazarova, Larisa B. and Lenz, Marlene M. and B{\"o}hmer, Thomas and Syrykh, Ludmila and Wagner, Bernd and Melles, Martin and Pestryakova, Luidmila A. and Herzschuh, Ulrike}, title = {Late Quaternary paleoenvironmental reconstructions from sediments of Lake Emanda (Verkhoyansk Mountains, East Siberia)}, series = {Journal of quaternary science : JQS}, volume = {37}, journal = {Journal of quaternary science : JQS}, number = {5}, publisher = {Wiley}, address = {New York, NY [u.a.]}, issn = {0267-8179}, doi = {10.1002/jqs.3419}, pages = {884 -- 899}, year = {2022}, abstract = {Continuous pollen and chironomid records from Lake Emanda (65 degrees 17'N, 135 degrees 45'E) provide new insights into the Late Quaternary environmental history of the Yana Highlands (Yakutia). Larch forest with shrubs (alders, pines, birches) dominated during the deposition of the lowermost sediments suggesting its Early Weichselian [Marine Isotope Stage (MIS) 5] age. Pollen- and chironomid-based climate reconstructions suggest July temperatures (T-July) slightly lower than modern. Gradually increasing amounts of herb pollen and cold stenotherm chironomid head capsules reflect cooler and drier environments, probably during the termination of MIS 5. T-July dropped to 8 degrees C. Mostly treeless vegetation is reconstructed during MIS 3. Tundra and steppe communities dominated during MIS 2. Shrubs became common after similar to 14.5 ka BP but herb-dominated habitats remained until the onset of the Holocene. Larch forests with shrub alder and dwarf birch dominated after the Holocene onset, ca. 11.7 ka BP. Decreasing amounts of shrub pollen during the Lateglacial are assigned to the Older Dryas and Younger Dryas with T-July similar to 7.5 degrees C. T-July increased up to 13 degrees C. Shrub stone pine was present after similar to 7.5 ka BP. The vegetation has been similar to modern since ca. 5.8 ka BP. Chironomid diversity and concentration in the sediments increased towards the present day, indicating the development of richer hydrobiological communities in response to the Holocene thermal maximum.}, language = {en} } @article{HerzschuhPestryakovaSavelievaetal.2013, author = {Herzschuh, Ulrike and Pestryakova, Luidmila Agafyevna and Savelieva, Larissa A. and Heinecke, Liv and B{\"o}hmer, Thomas and Biskaborn, Boris and Andreev, Andrei and Ramisch, Arne and Shinneman, Avery L. C. and Birks, H. John B.}, title = {Siberian larch forests and the ion content of thaw lakes form a geochemically functional entity}, series = {Nature Communications}, volume = {4}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms3408}, pages = {8}, year = {2013}, abstract = {Siberian larch forests growing on shallow permafrost soils have not, until now, been considered to be controlling the abiotic and biotic characteristics of the vast number of thaw-lake ecosystems. Here we show, using four independent data sets (a modern data set from 201 lakes from the tundra to taiga, and three lake-core records), that lake-water geochemistry in Yakutia is highly correlated with vegetation. Alkalinity increases with catchment forest density. We postulate that in this arid area, higher evapotranspiration in larch forests compared with that in the tundra vegetation leads to local salt accumulation in soils. Solutes are transported to nearby thaw lakes during rain events and snow melt, but are not fully transported into rivers, because there is no continuous groundwater flow within permafrost soils. This implies that potentially large shifts in the chemical characteristics of aquatic ecosystems to known warming are absent because of the slow response of catchment forests to climate change.}, language = {en} }