@article{HaakhHenkelSpagnoloetal.2014, author = {Haakh, Harald R. and Henkel, Carsten and Spagnolo, Salvatore and Rizzuto, Lucia and Passante, Roberto}, title = {Dynamical Casimir-Polder interaction between an atom and surface plasmons}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {89}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {2}, publisher = {American Physical Society}, address = {College Park}, issn = {1050-2947}, doi = {10.1103/PhysRevA.89.022509}, pages = {11}, year = {2014}, abstract = {We investigate the time-dependent Casimir-Polder potential of a polarizable two-level atom placed near a surface of arbitrary material, after a sudden change in the parameters of the system. Different initial conditions are taken into account. For an initially bare ground-state atom, the time-dependent Casimir-Polder energy reveals how the atom is "being dressed" by virtual, matter-assisted photons. We also study the transient behavior of the Casimir-Polder interaction between the atom and the surface starting from a partially dressed state, after an externally induced change in the atomic level structure or transition dipoles. The Heisenberg equations are solved through an iterative technique for both atomic and field operators in the medium-assisted electromagnetic field quantization scheme. We analyze, in particular, how the time evolution of the interaction energy depends on the optical properties of the surface, in particular on the dispersion relation of surface plasmon polaritons. The physical significance and the limits of validity of the obtained results are discussed in detail.}, language = {en} } @article{ArmataVasileBarcellonaetal.2016, author = {Armata, Federico and Vasile, Ruggero and Barcellona, Pablo and Buhmann, Stefan Yoshi and Rizzuto, Lucia and Passante, Roberto}, title = {Dynamical Casimir-Polder force between an excited atom and a conducting wall}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {94}, journal = {Physical review : A, Atomic, molecular, and optical physics}, publisher = {American Physical Society}, address = {College Park}, issn = {2469-9926}, doi = {10.1103/PhysRevA.94.042511}, pages = {104 -- 114}, year = {2016}, abstract = {We consider the dynamical atom-surface Casimir-Polder force in the nonequilibrium configuration of an atom near a perfectly conducting wall, initially prepared in an excited state with the field in its vacuum state. We evaluate the time-dependent Casimir-Polder force on the atom and find that it shows an oscillatory behavior from attractive to repulsive both in time and in space. We also investigate the asymptotic behavior in time of the dynamical force and of related local field quantities, showing that the static value of the force, as obtained by a time-independent approach, is recovered for times much longer than the time scale of the atomic self-dressing but shorter than the atomic decay time. We then discuss the evolution of global quantities such as atomic and field energies and their asymptotic behavior. We also compare our results for the dynamical force on the excited atom with analogous results recently obtained for an initially bare ground-state atom. We show that new relevant features are obtained in the case of an initially excited atom, for example, much larger values of the dynamical force with respect to the static one, allowing for an easier way to single out and observe the dynamical Casimir-Polder effect.}, language = {en} }