@article{YuanZhangQiuetal.2022, author = {Yuan, Jun and Zhang, Chujun and Qiu, Beibei and Liu, Wei and So, Shu Kong and Mainville, Mathieu and Leclerc, Mario and Shoaee, Safa and Neher, Dieter and Zou, Yingping}, title = {Effects of energetic disorder in bulk heterojunction organic solar cells}, series = {Energy \& environmental science}, volume = {15}, journal = {Energy \& environmental science}, number = {7}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1754-5692}, doi = {10.1039/d2ee00271j}, pages = {2806 -- 2818}, year = {2022}, abstract = {Organic solar cells (OSCs) have progressed rapidly in recent years through the development of novel organic photoactive materials, especially non-fullerene acceptors (NFAs). Consequently, OSCs based on state-of-the-art NFAs have reached significant milestones, such as similar to 19\% power conversion efficiencies (PCEs) and small energy losses (less than 0.5 eV). Despite these significant advances, understanding of the interplay between molecular structure and optoelectronic properties lags significantly behind. For example, despite the theoretical framework for describing the energetic disorder being well developed for the case of inorganic semiconductors, the question of the applicability of classical semiconductor theories in analyzing organic semiconductors is still under debate. A general observation in the inorganic field is that inorganic photovoltaic materials possessing a polycrystalline microstructure exhibit suppressed disorder properties and better charge carrier transport compared to their amorphous analogs. Accordingly, this principle extends to the organic semiconductor field as many organic photovoltaic materials are synthesized to pursue polycrystalline-like features. Yet, there appears to be sporadic examples that exhibit an opposite trend. However, full studies decoupling energetic disorder from aggregation effects have largely been left out. Hence, the potential role of the energetic disorder in OSCs has received little attention. Interestingly, recently reported state-of-the-art NFA-based devices could achieve a small energetic disorder and high PCE at the same time; and interest in this investigation related to the disorder properties in OSCs was revived. In this contribution, progress in terms of the correlation between molecular design and energetic disorder is reviewed together with their effects on the optoelectronic mechanism and photovoltaic performance. Finally, the specific challenges and possible solutions in reducing the energetic disorder of OSCs from the viewpoint of materials and devices are proposed.}, language = {en} } @article{LiBenduhnQiaoetal.2019, author = {Li, Tian-yi and Benduhn, Johannes and Qiao, Zhi and Liu, Yuan and Li, Yue and Shivhare, Rishi and Jaiser, Frank and Wang, Pei and Ma, Jie and Zeika, Olaf and Neher, Dieter and Mannsfeld, Stefan C. B. and Ma, Zaifei and Vandewal, Koen and Leo, Karl}, title = {Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b01222}, pages = {2684 -- 2691}, year = {2019}, abstract = {An understanding of the factors limiting the open-circuit voltage (V-oc) and related photon energy loss mechanisms is critical to increase the power conversion efficiency (PCE) of small-molecule organic solar cells (OSCs), especially those with near-infrared (NIR) absorbers. In this work, two NIR boron dipyrromethene (BODIPY) molecules are characterized for application in planar (PHJ) and bulk (BHJ) heterojunction OSCs. When two H atoms are substituted by F atoms on the peripheral phenyl rings of the molecules, the molecular aggregation type in the thin film changes from the H-type to J-type. For PHJ devices, the nonradiative voltage loss of 0.35 V in the J-aggregated BODIPY is lower than that of 0.49 V in the H-aggregated device. In BHJ devices with a nonradiative voltage loss of 0.35 V, a PCE of 5.5\% is achieved with an external quantum efficiency (EQE) maximum of 68\% at 700 nm.}, language = {en} } @article{UllbrichBenduhnJiaetal.2019, author = {Ullbrich, Sascha and Benduhn, Johannes and Jia, Xiangkun and Nikolis, Vasileios C. and Tvingstedt, Kristofer and Piersimoni, Fortunato and Roland, Steffen and Liu, Yuan and Wu, Jinhan and Fischer, Axel and Neher, Dieter and Reineke, Sebastian and Spoltore, Donato and Vandewal, Koen}, title = {Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses}, series = {Nature materials}, volume = {18}, journal = {Nature materials}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/s41563-019-0324-5}, pages = {459 -- 464}, year = {2019}, abstract = {Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes(1,2). Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001\% range(3,4). In contrast, the electroluminescence external quantum yield reaches up to 16\% in D-A-based organic light-emitting diodes(5-7). Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties of charge-transfer states in organic optoelectronic devices and foster the use of organic D-A blends in energy conversion applications involving visible and ultraviolet photons(8-11).}, language = {en} }