@article{PengZhuDongetal.2015, author = {Peng, Tao and Zhu, Ganghua and Dong, Yunpeng and Zeng, Junjie and Li, Wei and Guo, Weiwei and Chen, Yong and Duan, Maoli and Hocher, Berthold and Xie, Dinghua}, title = {BMP4: a possible key factor in differentiation of auditory neuron-like cells from bone-derived mesenchymal stromal cells}, series = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, volume = {61}, journal = {Clinical laboratory : the peer reviewed journal for clinical laboratories and laboratories related to blood transfusion}, number = {9}, publisher = {Clin Lab Publ., Verl. Klinisches Labor}, address = {Heidelberg}, issn = {1433-6510}, doi = {10.7754/Clin.Lab.2015.150217}, pages = {1171 -- 1178}, year = {2015}, abstract = {Background: Previous studies have shown that BMP4 may play an important part in the development of auditory neurons (ANs), which are degenerated in sensorineural hearing loss. However, whether BMP4 can promote sensory fate specification from mesenchymal stromal cells (MSCs) is unknown so far. Methods: MSCs isolated from Sprague-Dawley (SD) rats were confirmed by expression of MSC markers using flow cytometry and adipogenesis/osteogenesis using differentiation assays. MSCs treated with a complex of neurotrophic factors (BMP4 group and non-BMP4 group) were induced into auditory neuron-like cells, then the differences between the two groups were analyzed in morphological observation, cell growth curve, qRT-PCR, and immunofluorescence. Results: Flow cytometric analysis showed that the isolated cells expressed typical MSC surface markers. After adipogenic and osteogenic induction, the cells were stained by oil red O and Alizarin Red. The neuronal induced cells were in the growth plateau and had special forms of neurons. In the presence of BMP4, the inner ear genes NF-M, Neurog1, GluR4, NeuroD, Calretinin, NeuN, Tau, and GATA3 were up-regulated in MSCs. Conclusions: MSCs have the capacity to differentiate into auditory neuron-like cells in vitro. As an effective inducer, BMP4 may play a key role in transdifferentiation.}, language = {en} } @article{MutothyaXuLietal.2021, author = {Mutothya, Nicholas Mwilu and Xu, Yong and Li, Yongge and Metzler, Ralf and Mutua, Nicholas Muthama}, title = {First passage dynamics of stochastic motion in heterogeneous media driven by correlated white Gaussian and coloured non-Gaussian noises}, series = {Journal of physics. Complexity}, volume = {2}, journal = {Journal of physics. Complexity}, publisher = {IOP Publishing}, address = {Bristol}, issn = {2632-072X}, doi = {10.1088/2632-072X/ac35b5}, pages = {24}, year = {2021}, abstract = {We study the first passage dynamics for a diffusing particle experiencing a spatially varying diffusion coefficient while driven by correlated additive Gaussian white noise and multiplicative coloured non-Gaussian noise. We consider three functional forms for position dependence of the diffusion coefficient: power-law, exponential, and logarithmic. The coloured non-Gaussian noise is distributed according to Tsallis' q-distribution. Tracks of the non-Markovian systems are numerically simulated by using the fourth-order Runge-Kutta algorithm and the first passage times (FPTs) are recorded. The FPT density is determined along with the mean FPT (MFPT). Effects of the noise intensity and self-correlation of the multiplicative noise, the intensity of the additive noise, the cross-correlation strength, and the non-extensivity parameter on the MFPT are discussed.}, language = {en} } @article{ReicheFunkZhangetal.2012, author = {Reiche, Matthias and Funk, Roger and Zhang, Zhuodong and Hoffmann, Carsten and Reiche, Johannes and Wehrhan, Marc and Li, Yong and Sommer, Michael}, title = {Application of satellite remote sensing for mapping wind erosion risk and dust emission-deposition in Inner Mongolia grassland, China}, series = {Grassland science}, volume = {58}, journal = {Grassland science}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1744-6961}, doi = {10.1111/j.1744-697X.2011.00235.x}, pages = {8 -- 19}, year = {2012}, abstract = {Intensive grazing leads to land degradation and desertification of grassland ecosystems followed by serious environmental and social problems. The Xilingol steppe grassland in Inner Mongolia, China, which has been a sink area for dust for centuries, is strongly affected by the negative effects of overgrazing and wind erosion. The aim of this study is the provision of a wind erosion risk map with a spatial high resolution of 25 m to identify actual source and sink areas. In an integrative approach, field measurements of vegetation features and surface roughness length z0 were combined with Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image data for a land use classification. To determine the characteristics of the different land use classes, a field observation (ground truth) was performed in April 2009. The correlation of vegetation height and z0 (R2 = 0.8, n = 55) provided the basis for a separation of three main classes, grassland, non-vegetation and other. The integration of the soil-adjusted vegetation index (SAVI) and the spectral information from the atmospheric corrected ASTER bands 1, 2 and 3 (visible to near-infrared) led to a classification of the overall accuracy (OA) of 0.79 with a kappa () statistic of 0.74, respectively. Additionally, a digital elevation model (DEM) was used to identify topographical effects in relation to the main wind direction, which enabled a qualitative estimation of potential dust deposition areas. The generated maps result in a significantly higher description of the spatial variability in the Xilingol steppe grassland reflecting the different land use intensities on the current state of the grassland less, moderately and highly degraded. The wind erosion risk map enables the identification of characteristic mineral dust sources, sinks and transition zones.}, language = {en} } @article{ZhangWielandReicheetal.2012, author = {Zhang, Zhuodong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {Identifying sensitive areas to wind erosion in the xilingele grassland by computational fluid dynamics modelling}, series = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, volume = {8}, journal = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-9541}, doi = {10.1016/j.ecoinf.2011.12.002}, pages = {37 -- 47}, year = {2012}, abstract = {In order to identify the areas in the Xilingele grassland which are sensitive to wind erosion, a computational fluid dynamics model (CFD-WEM) was used to simulate the wind fields over a region of 37 km(2) which contains different topography and land use types. Previous studies revealed the important influences of topography and land use on wind erosion in the Xilingele grassland. Topography influences wind fields at large scale, and land use influences wind fields near the ground. Two steps were designed to implement the CFD wind simulation, and they were respectively to simulate the influence of topography and surface roughness on the wind. Digital elevation model (DEM) and surface roughness length were the key inputs for the CFD simulation. The wind simulation by CFD-WEM was validated by a wind data set which was measured simultaneously at six positions in the field. Three scenarios with different wind velocities were designed based on observed dust storm events, and wind fields were simulated according to these scenarios to predict the sensitive areas to wind erosion. General assumptions that cropland is the most sensitive area to wind erosion and heavily and moderately grazed grasslands are both sensitive etc. can be refined by the modelling of CFD-WEM. Aided by the results of this study, the land use planning and protection measures against wind erosion can be more efficient. Based on the case study in the Xilingele grassland, a method of regional wind erosion assessment aided by CFD wind simulation is summarized. The essence of this method is a combination of CFD wind simulation and determination of threshold wind velocity for wind erosion. Because of the physically-based simulation and the flexibility of the method, it can be generalised to other regions.}, language = {en} } @article{ZhangWielandReicheetal.2012, author = {Zhang, Zhuo-dong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {A computational fluid dynamics model for wind simulation: model implementation and experimental validation}, series = {Journal of Zhejiang University : an international journal ; Science A, Applied physics \& engineering : an international applied physics \& engineering journal}, volume = {13}, journal = {Journal of Zhejiang University : an international journal ; Science A, Applied physics \& engineering : an international applied physics \& engineering journal}, number = {4}, publisher = {Zhejiang University Press}, address = {Hangzou}, issn = {1673-565X}, doi = {10.1631/jzus.A1100231}, pages = {274 -- 283}, year = {2012}, abstract = {To provide physically based wind modelling for wind erosion research at regional scale, a 3D computational fluid dynamics (CFD) wind model was developed. The model was programmed in C language based on the Navier-Stokes equations, and it is freely available as open source. Integrated with the spatial analysis and modelling tool (SAMT), the wind model has convenient input preparation and powerful output visualization. To validate the wind model, a series of experiments was conducted in a wind tunnel. A blocking inflow experiment was designed to test the performance of the model on simulation of basic fluid processes. A round obstacle experiment was designed to check if the model could simulate the influences of the obstacle on wind field. Results show that measured and simulated wind fields have high correlations, and the wind model can simulate both the basic processes of the wind and the influences of the obstacle on the wind field. These results show the high reliability of the wind model. A digital elevation model (DEM) of an area (3800 m long and 1700 m wide) in the Xilingele grassland in Inner Mongolia (autonomous region, China) was applied to the model, and a 3D wind field has been successfully generated. The clear implementation of the model and the adequate validation by wind tunnel experiments laid a solid foundation for the prediction and assessment of wind erosion at regional scale.}, language = {en} } @article{ZhangWielandReicheetal.2011, author = {Zhang, Zhuodong and Wieland, Ralf and Reiche, Matthias and Funk, Roger and Hoffmann, Carsten and Li, Yong and Sommer, Michael}, title = {Wind modelling for wind erosion research by open source computational fluid dynamics}, series = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, volume = {6}, journal = {Ecological informatics : an international journal on ecoinformatics and computational ecolog}, number = {5}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1574-9541}, doi = {10.1016/j.ecoinf.2011.02.001}, pages = {316 -- 324}, year = {2011}, abstract = {The open source computational fluid dynamics (CFD) wind model (CFD-WEM) for wind erosion research in the Xilingele grassland in Inner Mongolia (autonomous region, China) is compared with two open source CFD models Gerris and OpenFOAM. The evaluation of these models was made according to software technology, implemented methods, handling, accuracy and calculation speed. All models were applied to the same wind tunnel data set. Results show that the simplest CFD-WEM has the highest calculation speed with acceptable accuracy, and the most powerful OpenFOAM produces the simulation with highest accuracy and the lowest calculation speed. Gerris is between CFD-WEM and OpenFOAM. It calculates faster than OpenFOAM, and it is capable to solve different CFD problems. CFD-WEM is the optimal model to be further developed for wind erosion research in Inner Mongolia grassland considering its efficiency and the uncertainties of other input data. However, for other applications using CFD technology, Gerris and OpenFOAM can be good choices. This paper shows the powerful capability of open source CFD software in wind erosion study, and advocates more involvement of open source technology in wind erosion and related ecological researches.}, language = {en} } @article{AtsawawaranuntComasBruMozhdehietal.2018, author = {Atsawawaranunt, Kamolphat and Comas-Bru, Laia and Mozhdehi, Sahar Amirnezhad and Deininger, Michael and Harrison, Sandy P. and Baker, Andy and Boyd, Meighan and Kaushal, Nikita and Ahmad, Syed Masood and Brahim, Yassine Ait and Arienzo, Monica and Bajo, Petra and Braun, Kerstin and Burstyn, Yuval and Chawchai, Sakonvan and Duan, Wuhui and Hatvani, Istvan Gabor and Hu, Jun and Kern, Zoltan and Labuhn, Inga and Lachniet, Matthew and Lechleitner, Franziska A. and Lorrey, Andrew and Perez-Mejias, Carlos and Pickering, Robyn and Scroxton, Nick and Atkinson, Tim and Ayalon, Avner and Baldini, James and Bar-Matthews, Miriam and Pablo Bernal, Juan and Breitenbach, Sebastian Franz Martin and Boch, Ronny and Borsato, Andrea and Cai, Yanjun and Carolin, Stacy and Cheng, Hai and Columbu, Andrea and Couchoud, Isabelle and Cruz, Francisco and Demeny, Attila and Dominguez-Villar, David and Dragusin, Virgil and Drysdale, Russell and Ersek, Vasile and Finne, Martin and Fleitmann, Dominik and Fohlmeister, Jens Bernd and Frappier, Amy and Genty, Dominique and Holzkamper, Steffen and Hopley, Philip and Kathayat, Gayatri and Keenan-Jones, Duncan and Koltai, Gabriella and Luetscher, Marc and Li, Ting-Yong and Lone, Mahjoor Ahmad and Markowska, Monika and Mattey, Dave and McDermott, Frank and Moreno, Ana and Moseley, Gina and Nehme, Carole and Novello, Valdir F. and Psomiadis, David and Rehfeld, Kira and Ruan, Jiaoyang and Sekhon, Natasha and Sha, Lijuan and Sholz, Denis and Shopov, Yavor and Smith, Andrew and Strikis, Nicolas and Treble, Pauline and Unal-Imer, Ezgi and Vaks, Anton and Vansteenberge, Stef and Veiga-Pires, Cristina and Voarintsoa, Ny Riavo and Wang, Xianfeng and Wong, Corinne and Wortham, Barbara and Wurtzel, Jennifer and Zong, Baoyun}, title = {The SISAL database}, series = {Earth System Science Data}, volume = {10}, journal = {Earth System Science Data}, number = {3}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {SISAL Working Grp Members}, issn = {1866-3508}, doi = {10.5194/essd-10-1687-2018}, pages = {1687 -- 1713}, year = {2018}, abstract = {Stable isotope records from speleothems provide information on past climate changes, most particularly information that can be used to reconstruct past changes in precipitation and atmospheric circulation. These records are increasingly being used to provide "out-of-sample" evaluations of isotope-enabled climate models. SISAL (Speleothem Isotope Synthesis and Analysis) is an international working group of the Past Global Changes (PAGES) project. The working group aims to provide a comprehensive compilation of speleothem isotope records for climate reconstruction and model evaluation. The SISAL database contains data for individual speleothems, grouped by cave system. Stable isotopes of oxygen and carbon (delta O-18, delta C-13) measurements are referenced by distance from the top or bottom of the speleothem. Additional tables provide information on dating, including information on the dates used to construct the original age model and sufficient information to assess the quality of each data set and to erect a standardized chronology across different speleothems. The metadata table provides location information, information on the full range of measurements carried out on each speleothem and information on the cave system that is relevant to the interpretation of the records, as well as citations for both publications and archived data.}, language = {en} } @article{ComasBruHarrisonWerneretal.2019, author = {Comas-Bru, Laia and Harrison, Sandy P. and Werner, Martin and Rehfeld, Kira and Scroxton, Nick and Veiga-Pires, Cristina and Ahmad, Syed Masood and Brahim, Yassine Ait and Mozhdehi, Sahar Amirnezhad and Arienzo, Monica and Atsawawaranunt, Kamolphat and Baker, Andy and Braun, Kerstin and Breitenbach, Sebastian Franz Martin and Burstyn, Yuval and Chawchai, Sakonvan and Columbu, Andrea and Deininger, Michael and Demeny, Attila and Dixon, Bronwyn and Hatvani, Istvan Gabor and Hu, Jun and Kaushal, Nikita and Kern, Zoltan and Labuhn, Inga and Lachniet, Matthew S. and Lechleitner, Franziska A. and Lorrey, Andrew and Markowska, Monika and Nehme, Carole and Novello, Valdir F. and Oster, Jessica and Perez-Mejias, Carlos and Pickering, Robyn and Sekhon, Natasha and Wang, Xianfeng and Warken, Sophie and Atkinson, Tim and Ayalon, Avner and Baldini, James and Bar-Matthews, Miryam and Bernal, Juan Pablo and Boch, Ronny and Borsato, Andrea and Boyd, Meighan and Brierley, Chris and Cai, Yanjun and Carolin, Stacy and Cheng, Hai and Constantin, Silviu and Couchoud, Isabelle and Cruz, Francisco and Denniston, Rhawn and Dragusin, Virgil and Duan, Wuhui and Ersek, Vasile and Finne, Martin and Fleitmann, Dominik and Fohlmeister, Jens Bernd and Frappier, Amy and Genty, Dominique and Holzkamper, Steffen and Hopley, Philip and Johnston, Vanessa and Kathayat, Gayatri and Keenan-Jones, Duncan and Koltai, Gabriella and Li, Ting-Yong and Lone, Mahjoor Ahmad and Luetscher, Marc and Mattey, Dave and Moreno, Ana and Moseley, Gina and Psomiadis, David and Ruan, Jiaoyang and Scholz, Denis and Sha, Lijuan and Smith, Andrew Christopher and Strikis, Nicolas and Treble, Pauline and Unal-Imer, Ezgi and Vaks, Anton and Vansteenberge, Stef and Voarintsoa, Ny Riavo G. and Wong, Corinne and Wortham, Barbara and Wurtzel, Jennifer and Zhang, Haiwei}, title = {Evaluating model outputs using integrated global speleothem records of climate change since the last glacial}, series = {Climate of the past : an interactive open access journal of the European Geosciences Union}, volume = {15}, journal = {Climate of the past : an interactive open access journal of the European Geosciences Union}, number = {4}, publisher = {Copernicus}, address = {G{\"o}ttingen}, organization = {SISAL Working Grp}, issn = {1814-9324}, doi = {10.5194/cp-15-1557-2019}, pages = {1557 -- 1579}, year = {2019}, abstract = {Although quantitative isotope data from speleothems has been used to evaluate isotope-enabled model simulations, currently no consensus exists regarding the most appropriate methodology through which to achieve this. A number of modelling groups will be running isotope-enabled palaeoclimate simulations in the framework of the Coupled Model Intercomparison Project Phase 6, so it is timely to evaluate different approaches to using the speleothem data for data-model comparisons. Here, we illustrate this using 456 globally distributed speleothem δ18O records from an updated version of the Speleothem Isotopes Synthesis and Analysis (SISAL) database and palaeoclimate simulations generated using the ECHAM5-wiso isotope-enabled atmospheric circulation model. We show that the SISAL records reproduce the first-order spatial patterns of isotopic variability in the modern day, strongly supporting the application of this dataset for evaluating model-derived isotope variability into the past. However, the discontinuous nature of many speleothem records complicates the process of procuring large numbers of records if data-model comparisons are made using the traditional approach of comparing anomalies between a control period and a given palaeoclimate experiment. To circumvent this issue, we illustrate techniques through which the absolute isotope values during any time period could be used for model evaluation. Specifically, we show that speleothem isotope records allow an assessment of a model's ability to simulate spatial isotopic trends. Our analyses provide a protocol for using speleothem isotope data for model evaluation, including screening the observations to take into account the impact of speleothem mineralogy on δ18O values, the optimum period for the modern observational baseline and the selection of an appropriate time window for creating means of the isotope data for palaeo-time-slices.}, language = {en} } @article{RosinLaiMouldetal.2022, author = {Rosin, Paul L. and Lai, Yu-Kun and Mould, David and Yi, Ran and Berger, Itamar and Doyle, Lars and Lee, Seungyong and Li, Chuan and Liu, Yong-Jin and Semmo, Amir and Shamir, Ariel and Son, Minjung and Winnem{\"o}ller, Holger}, title = {NPRportrait 1.0: A three-level benchmark for non-photorealistic rendering of portraits}, series = {Computational visual media}, volume = {8}, journal = {Computational visual media}, number = {3}, publisher = {Springer Nature}, address = {London}, issn = {2096-0433}, doi = {10.1007/s41095-021-0255-3}, pages = {445 -- 465}, year = {2022}, abstract = {Recently, there has been an upsurge of activity in image-based non-photorealistic rendering (NPR), and in particular portrait image stylisation, due to the advent of neural style transfer (NST). However, the state of performance evaluation in this field is poor, especially compared to the norms in the computer vision and machine learning communities. Unfortunately, the task of evaluating image stylisation is thus far not well defined, since it involves subjective, perceptual, and aesthetic aspects. To make progress towards a solution, this paper proposes a new structured, three-level, benchmark dataset for the evaluation of stylised portrait images. Rigorous criteria were used for its construction, and its consistency was validated by user studies. Moreover, a new methodology has been developed for evaluating portrait stylisation algorithms, which makes use of the different benchmark levels as well as annotations provided by user studies regarding the characteristics of the faces. We perform evaluation for a wide variety of image stylisation methods (both portrait-specific and general purpose, and also both traditional NPR approaches and NST) using the new benchmark dataset.}, language = {en} }