@phdthesis{Wojcik2024, author = {Wojcik, Laurie Anne Myriam}, title = {Beyond a single diversity facet: implications for the links between biodiversity, environmental changes and ecosystem functioning}, doi = {10.25932/publishup-64692}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-646925}, school = {Universit{\"a}t Potsdam}, pages = {vi, 189}, year = {2024}, abstract = {Human activities modify nature worldwide via changes in the environment, biodiversity and the functioning of ecosystems, which in turn disrupt ecosystem services and feed back negatively on humans. A pressing challenge is thus to limit our impact on nature, and this requires detailed understanding of the interconnections between the environment, biodiversity and ecosystem functioning. These three components of ecosystems each include multiple dimensions, which interact with each other in different ways, but we lack a comprehensive picture of their interconnections and underlying mechanisms. Notably, diversity is often viewed as a single facet, namely species diversity, while many more facets exist at different levels of biological organisation (e.g. genetic, phenotypic, functional, multitrophic diversity), and multiple diversity facets together constitute the raw material for adaptation to environmental changes and shape ecosystem functioning. Consequently, investigating the multidimensionality of ecosystems, and in particular the links between multifaceted diversity, environmental changes and ecosystem functions, is crucial for ecological research, management and conservation. This thesis aims to explore several aspects of this question theoretically. I investigate three broad topics in this thesis. First, I focus on how food webs with varying levels of functional diversity across three trophic levels buffer environmental changes, such as a sudden addition of nutrients or long-term changes (e.g. warming or eutrophication). I observed that functional diversity generally enhanced ecological stability (i.e. the buffering capacity of the food web) by increasing trophic coupling. More precisely, two aspects of ecological stability (resistance and resilience) increased even though a third aspect (the inverse of the time required for the system to reach its post-perturbation state) decreased with increasing functional diversity. Second, I explore how several diversity facets served as a raw material for different sources of adaptation and how these sources affected multiple ecosystem functions across two trophic levels. Considering several sources of adaptation enabled the interplay between ecological and evolutionary processes, which affected trophic coupling and thereby ecosystem functioning. Third, I reflect further on the multifaceted nature of diversity by developing an index K able to quantify the facet of functional diversity, which is itself multifaceted. K can provide a comprehensive picture of functional diversity and is a rather good predictor of ecosystem functioning. Finally I synthesise the interdependent mechanisms (complementarity and selection effects, trophic coupling and adaptation) underlying the relationships between multifaceted diversity, ecosystem functioning and the environment, and discuss the generalisation of my findings across ecosystems and further perspectives towards elaborating an operational biodiversity-ecosystem functioning framework for research and conservation.}, language = {en} }