@article{TaalStPourcainThieringetal.2012, author = {Taal, H. Rob and St Pourcain, Beate and Thiering, Elisabeth and Das, Shikta and Mook-Kanamori, Dennis O. and Warrington, Nicole M. and Kaakinen, Marika and Kreiner-Moller, Eskil and Bradfield, Jonathan P. and Freathy, Rachel M. and Geller, Frank and Guxens, Monica and Cousminer, Diana L. and Kerkhof, Marjan and Timpson, Nicholas J. and Ikram, M. Arfan and Beilin, Lawrence J. and Bonnelykke, Klaus and Buxton, Jessica L. and Charoen, Pimphen and Chawes, Bo Lund Krogsgaard and Eriksson, Johan and Evans, David M. and Hofman, Albert and Kemp, John P. and Kim, Cecilia E. and Klopp, Norman and Lahti, Jari and Lye, Stephen J. and McMahon, George and Mentch, Frank D. and Mueller-Nurasyid, Martina and O'Reilly, Paul F. and Prokopenko, Inga and Rivadeneira, Fernando and Steegers, Eric A. P. and Sunyer, Jordi and Tiesler, Carla and Yaghootkar, Hanieh and Breteler, Monique M. B. and Debette, Stephanie and Fornage, Myriam and Gudnason, Vilmundur and Launer, Lenore J. and van der Lugt, Aad and Mosley, Thomas H. and Seshadri, Sudha and Smith, Albert V. and Vernooij, Meike W. and Blakemore, Alexandra I. F. and Chiavacci, Rosetta M. and Feenstra, Bjarke and Fernandez-Banet, Julio and Grant, Struan F. A. and Hartikainen, Anna-Liisa and van der Heijden, Albert J. and Iniguez, Carmen and Lathrop, Mark and McArdle, Wendy L. and Molgaard, Anne and Newnham, John P. and Palmer, Lyle J. and Palotie, Aarno and Pouta, Annneli and Ring, Susan M. and Sovio, Ulla and Standl, Marie and Uitterlinden, Andre G. and Wichmann, H-Erich and Vissing, Nadja Hawwa and DeCarli, Charles and van Duijn, Cornelia M. and McCarthy, Mark I. and Koppelman, Gerard H. and Estivill, Xavier and Hattersley, Andrew T. and Melbye, Mads and Bisgaard, Hans and Pennell, Craig E. and Widen, Elisabeth and Hakonarson, Hakon and Smith, George Davey and Heinrich, Joachim and Jarvelin, Marjo-Riitta and Jaddoe, Vincent W. V. and Adair, Linda S. and Ang, Wei and Atalay, Mustafa and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Davis, Oliver S. P. and Elliott, Paul and Evans, David M. and Feenstra, Bjarke and Flexeder, Claudia and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Geller, Frank and Groen-Blokhuis, Maria and Goh, Liang-Kee and Guxens, Monica and Haworth, Claire M. A. and Hadley, Dexter and Hebebrand, Johannes and Hinney, Anke and Hirschhorn, Joel N. and Holloway, John W. and Holst, Claus and Hottenga, Jouke Jan and Horikoshi, Momoko and Huikari, Ville and Hypponen, Elina and Iniguez, Carmen and Kaakinen, Marika and Kilpelainen, Tuomas O. and Kirin, Mirna and Kowgier, Matthew and Lakka, Hanna-Maaria and Lange, Leslie A. and Lawlor, Debbie A. and Lehtimaki, Terho and Lewin, Alex and Lindgren, Cecilia and Lindi, Virpi and Maggi, Reedik and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Murray, Jeffrey C. and Nivard, Michel and Nohr, Ellen Aagaard and Ntalla, Ioanna and Oken, Emily and O'Reilly, Paul F. and Palmer, Lyle J. and Panoutsopoulou, Kalliope and Pararajasingham, Jennifer and Prokopenko, Inga and Rodriguez, Alina and Salem, Rany M. and Sebert, Sylvain and Siitonen, Niina and Sovio, Ulla and St Pourcain, Beate and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Teo, Yik-Ying and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Zeggini, Eleftheria and Boomsma, Dorret I. and Cooper, Cyrus and Estivill, Xavier and Gillman, Matthew and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Hocher, Berthold and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and Lakka, Timo A. and McCarthy, Mark I. and Melbye, Mads and Mohlke, Karen L. and Dedoussis, George V. and Ong, Ken K. and Pearson, Ewan R. and Pennell, Craig E. and Price, Thomas S. and Power, Chris and Raitakari, Olli T. and Saw, Seang-Mei and Scherag, Andre and Simell, Olli and Sorensen, Thorkild I. A. and Timpson, Nicholas J. and Widen, Elisabeth and Wilson, James F. and Ang, Wei and van Beijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Bradfield, Jonathan P. and Charoen, Pimphen and Coin, Lachlan and Cousminer, Diana L. and Das, Shikta and Elliott, Paul and Evans, David M. and Frayling, Tim and Freathy, Rachel M. and Gaillard, Romy and Groen-Blokhuis, Maria and Guxens, Monica and Hadley, Dexter and Hottenga, Jouke Jan and Huikari, Ville and Hypponen, Elina and Kaakinen, Marika and Kowgier, Matthew and Lawlor, Debbie A. and Lewin, Alex and Lindgren, Cecilia and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Mook-Kanamori, Dennis O. and Nivard, Michel and O'Reilly, Paul F. and Palmer, Lyle J. and Prokopenko, Inga and Rodriguez, Alina and Sebert, Sylvain and Sovio, Ulla and St Pourcain, Beate and Standl, Marie and Strachan, David P. and Sunyer, Jordi and Taal, H. Rob and Thiering, Elisabeth and Tiesler, Carla and Uitterlinden, Andre G. and Valcarcel, Beatriz and Warrington, Nicole M. and White, Scott and Willemsen, Gonneke and Yaghootkar, Hanieh and Boomsma, Dorret I. and Estivill, Xavier and Grant, Struan F. A. and Hakonarson, Hakon and Hattersley, Andrew T. and Heinrich, Joachim and Jaddoe, Vincent W. V. and Jarvelin, Marjo-Riitta and McCarthy, Mark I. and Pennell, Craig E. and Power, Chris and Timpson, Nicholas J. and Widen, Elisabeth and Ikram, M. Arfan and Fornage, Myriam and Smith, Albert V. and Seshadri, Sudha and Schmidt, Reinhold and Debette, Stephanie and Vrooman, Henri A. and Sigurdsson, Sigurdur and Ropele, Stefan and Coker, Laura H. and Longstreth, W. T. and Niessen, Wiro J. and DeStefano, Anita L. and Beiser, Alexa and Zijdenbos, Alex P. and Struchalin, Maksim and Jack, Clifford R. and Nalls, Mike A. and Au, Rhoda and Hofman, Albert and Gudnason, Haukur and van der Lugt, Aad and Harris, Tamara B. and Meeks, William M. and Vernooij, Meike W. and van Buchem, Mark A. and Catellier, Diane and Gudnason, Vilmundur and Windham, B. Gwen and Wolf, Philip A. and van Duijn, Cornelia M. and Mosley, Thomas H. and Schmidt, Helena and Launer, Lenore J. and Breteler, Monique M. B. and DeCarli, Charles}, title = {Common variants at 12q15 and 12q24 are associated with infant head circumference}, series = {Nature genetics}, volume = {44}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Cohorts Heart Aging Res Genetic Ep, Early Genetics Lifecourse Epidemio, Early Growth Genetics EGG Consorti}, issn = {1061-4036}, doi = {10.1038/ng.2238}, pages = {532 -- +}, year = {2012}, abstract = {To identify genetic variants associated with head circumference in infancy, we performed a meta-analysis of seven genome-wide association studies (GWAS) (N = 10,768 individuals of European ancestry enrolled in pregnancy and/or birth cohorts) and followed up three lead signals in six replication studies (combined N = 19,089). rs7980687 on chromosome 12q24 (P = 8.1 x 10(-9)) and rs1042725 on chromosome 12q15 (P = 2.8 x 10(-10)) were robustly associated with head circumference in infancy. Although these loci have previously been associated with adult height(1), their effects on infant head circumference were largely independent of height (P = 3.8 x 10(-7) for rs7980687 and P = 1.3 x 10(-7) for rs1042725 after adjustment for infant height). A third signal, rs11655470 on chromosome 17q21, showed suggestive evidence of association with head circumference (P = 3.9 x 10(-6)). SNPs correlated to the 17q21 signal have shown genome-wide association with adult intracranial volume(2), Parkinson's disease and other neurodegenerative diseases(3-5), indicating that a common genetic variant in this region might link early brain growth with neurological disease in later life.}, language = {en} } @article{WuttkeLiLietal.2019, author = {Wuttke, Matthias and Li, Yong and Li, Man and Sieber, Karsten B. and Feitosa, Mary F. and Gorski, Mathias and Tin, Adrienne and Wang, Lihua and Chu, Audrey Y. and Hoppmann, Anselm and Kirsten, Holger and Giri, Ayush and Chai, Jin-Fang and Sveinbjornsson, Gardar and Tayo, Bamidele O. and Nutile, Teresa and Fuchsberger, Christian and Marten, Jonathan and Cocca, Massimiliano and Ghasemi, Sahar and Xu, Yizhe and Horn, Katrin and Noce, Damia and Van der Most, Peter J. and Sedaghat, Sanaz and Yu, Zhi and Akiyama, Masato and Afaq, Saima and Ahluwalia, Tarunveer Singh and Almgren, Peter and Amin, Najaf and Arnlov, Johan and Bakker, Stephan J. L. and Bansal, Nisha and Baptista, Daniela and Bergmann, Sven and Biggs, Mary L. and Biino, Ginevra and Boehnke, Michael and Boerwinkle, Eric and Boissel, Mathilde and B{\"o}ttinger, Erwin and Boutin, Thibaud S. and Brenner, Hermann and Brumat, Marco and Burkhardt, Ralph and Butterworth, Adam S. and Campana, Eric and Campbell, Archie and Campbell, Harry and Canouil, Mickael and Carroll, Robert J. and Catamo, Eulalia and Chambers, John C. and Chee, Miao-Ling and Chee, Miao-Li and Chen, Xu and Cheng, Ching-Yu and Cheng, Yurong and Christensen, Kaare and Cifkova, Renata and Ciullo, Marina and Concas, Maria Pina and Cook, James P. and Coresh, Josef and Corre, Tanguy and Sala, Cinzia Felicita and Cusi, Daniele and Danesh, John and Daw, E. Warwick and De Borst, Martin H. and De Grandi, Alessandro and De Mutsert, Renee and De Vries, Aiko P. J. and Degenhardt, Frauke and Delgado, Graciela and Demirkan, Ayse and Di Angelantonio, Emanuele and Dittrich, Katalin and Divers, Jasmin and Dorajoo, Rajkumar and Eckardt, Kai-Uwe and Ehret, Georg and Elliott, Paul and Endlich, Karlhans and Evans, Michele K. and Felix, Janine F. and Foo, Valencia Hui Xian and Franco, Oscar H. and Franke, Andre and Freedman, Barry I. and Freitag-Wolf, Sandra and Friedlander, Yechiel and Froguel, Philippe and Gansevoort, Ron T. and Gao, He and Gasparini, Paolo and Gaziano, J. Michael and Giedraitis, Vilmantas and Gieger, Christian and Girotto, Giorgia and Giulianini, Franco and Gogele, Martin and Gordon, Scott D. and Gudbjartsson, Daniel F. and Gudnason, Vilmundur and Haller, Toomas and Hamet, Pavel and Harris, Tamara B. and Hartman, Catharina A. and Hayward, Caroline and Hellwege, Jacklyn N. and Heng, Chew-Kiat and Hicks, Andrew A. and Hofer, Edith and Huang, Wei and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Indridason, Olafur S. and Ingelsson, Erik and Ising, Marcus and Jaddoe, Vincent W. V. and Jakobsdottir, Johanna and Jonas, Jost B. and Joshi, Peter K. and Josyula, Navya Shilpa and Jung, Bettina and Kahonen, Mika and Kamatani, Yoichiro and Kammerer, Candace M. and Kanai, Masahiro and Kastarinen, Mika and Kerr, Shona M. and Khor, Chiea-Chuen and Kiess, Wieland and Kleber, Marcus E. and Koenig, Wolfgang and Kooner, Jaspal S. and Korner, Antje and Kovacs, Peter and Kraja, Aldi T. and Krajcoviechova, Alena and Kramer, Holly and Kramer, Bernhard K. and Kronenberg, Florian and Kubo, Michiaki and Kuhnel, Brigitte and Kuokkanen, Mikko and Kuusisto, Johanna and La Bianca, Martina and Laakso, Markku and Lange, Leslie A. and Langefeld, Carl D. and Lee, Jeannette Jen-Mai and Lehne, Benjamin and Lehtimaki, Terho and Lieb, Wolfgang and Lim, Su-Chi and Lind, Lars and Lindgren, Cecilia M. and Liu, Jun and Liu, Jianjun and Loeffler, Markus and Loos, Ruth J. F. and Lucae, Susanne and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Magi, Reedik and Magnusson, Patrik K. E. and Mahajan, Anubha and Martin, Nicholas G. and Martins, Jade and Marz, Winfried and Mascalzoni, Deborah and Matsuda, Koichi and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Metspalu, Andres and Mikaelsdottir, Evgenia K. and Milaneschi, Yuri and Miliku, Kozeta and Mishra, Pashupati P. and Program, V. A. Million Veteran and Mohlke, Karen L. and Mononen, Nina and Montgomery, Grant W. and Mook-Kanamori, Dennis O. and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nalls, Mike A. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and Noordam, Raymond and Olafsson, Isleifur and Oldehinkel, Albertine J. and Orho-Melander, Marju and Ouwehand, Willem H. and Padmanabhan, Sandosh and Palmer, Nicholette D. and Palsson, Runolfur and Penninx, Brenda W. J. H. and Perls, Thomas and Perola, Markus and Pirastu, Mario and Pirastu, Nicola and Pistis, Giorgio and Podgornaia, Anna I. and Polasek, Ozren and Ponte, Belen and Porteous, David J. and Poulain, Tanja and Pramstaller, Peter P. and Preuss, Michael H. and Prins, Bram P. and Province, Michael A. and Rabelink, Ton J. and Raffield, Laura M. and Raitakari, Olli T. and Reilly, Dermot F. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Ridker, Paul M. and Rivadeneira, Fernando and Rizzi, Federica and Roberts, David J. and Robino, Antonietta and Rossing, Peter and Rudan, Igor and Rueedi, Rico and Ruggiero, Daniela and Ryan, Kathleen A. and Saba, Yasaman and Sabanayagam, Charumathi and Salomaa, Veikko and Salvi, Erika and Saum, Kai-Uwe and Schmidt, Helena and Schmidt, Reinhold and Ben Schottker, and Schulz, Christina-Alexandra and Schupf, Nicole and Shaffer, Christian M. and Shi, Yuan and Smith, Albert V. and Smith, Blair H. and Soranzo, Nicole and Spracklen, Cassandra N. and Strauch, Konstantin and Stringham, Heather M. and Stumvoll, Michael and Svensson, Per O. and Szymczak, Silke and Tai, E-Shyong and Tajuddin, Salman M. and Tan, Nicholas Y. Q. and Taylor, Kent D. and Teren, Andrej and Tham, Yih-Chung and Thiery, Joachim and Thio, Chris H. L. and Thomsen, Hauke and Thorleifsson, Gudmar and Toniolo, Daniela and Tonjes, Anke and Tremblay, Johanne and Tzoulaki, Ioanna and Uitterlinden, Andre G. and Vaccargiu, Simona and Van Dam, Rob M. and Van der Harst, Pim and Van Duijn, Cornelia M. and Edward, Digna R. Velez and Verweij, Niek and Vogelezang, Suzanne and Volker, Uwe and Vollenweider, Peter and Waeber, Gerard and Waldenberger, Melanie and Wallentin, Lars and Wang, Ya Xing and Wang, Chaolong and Waterworth, Dawn M. and Bin Wei, Wen and White, Harvey and Whitfield, John B. and Wild, Sarah H. and Wilson, James F. and Wojczynski, Mary K. and Wong, Charlene and Wong, Tien-Yin and Xu, Liang and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Weihua and Zonderman, Alan B. and Rotter, Jerome I. and Bochud, Murielle and Psaty, Bruce M. and Vitart, Veronique and Wilson, James G. and Dehghan, Abbas and Parsa, Afshin and Chasman, Daniel I. and Ho, Kevin and Morris, Andrew P. and Devuyst, Olivier and Akilesh, Shreeram and Pendergrass, Sarah A. and Sim, Xueling and Boger, Carsten A. and Okada, Yukinori and Edwards, Todd L. and Snieder, Harold and Stefansson, Kari and Hung, Adriana M. and Heid, Iris M. and Scholz, Markus and Teumer, Alexander and Kottgen, Anna and Pattaro, Cristian}, title = {A catalog of genetic loci associated with kidney function from analyses of a million individuals}, series = {Nature genetics}, volume = {51}, journal = {Nature genetics}, number = {6}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Lifelines COHort Study}, issn = {1061-4036}, doi = {10.1038/s41588-019-0407-x}, pages = {957 -- +}, year = {2019}, abstract = {Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through transancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these,147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.}, language = {en} } @article{IkramFornageSmithetal.2012, author = {Ikram, M. Arfan and Fornage, Myriam and Smith, Albert V. and Seshadri, Sudha and Schmidt, Reinhold and Debette, Stephanie and Vrooman, Henri A. and Sigurdsson, Sigurdur and Ropele, Stefan and Taal, H. Rob and Mook-Kanamori, Dennis O. and Coker, Laura H. and Longstreth, W. T. and Niessen, Wiro J. and DeStefano, Anita L. and Beiser, Alexa and Zijdenbos, Alex P. and Struchalin, Maksim and Jack, Clifford R. and Rivadeneira, Fernando and Uitterlinden, Andre G. and Knopman, David S. and Hartikainen, Anna-Liisa and Pennell, Craig E. and Thiering, Elisabeth and Steegers, Eric A. P. and Hakonarson, Hakon and Heinrich, Joachim and Palmer, Lyle J. and Jarvelin, Marjo-Riitta and McCarthy, Mark I. and Grant, Struan F. A. and St Pourcain, Beate and Timpson, Nicholas J. and Smith, George Davey and Sovio, Ulla and Nalls, Mike A. and Au, Rhoda and Hofman, Albert and Gudnason, Haukur and van der Lugt, Aad and Harris, Tamara B. and Meeks, William M. and Vernooij, Meike W. and van Buchem, Mark A. and Catellier, Diane and Jaddoe, Vincent W. V. and Gudnason, Vilmundur and Windham, B. Gwen and Wolf, Philip A. and van Duijn, Cornelia M. and Mosley, Thomas H. and Schmidt, Helena and Launer, Lenore J. and Breteler, Monique M. B. and DeCarli, Charles and Adair, Linda S. and Ang, Wei and Atalay, Mustafa and vanBeijsterveldt, Toos and Bergen, Nienke and Benke, Kelly and Berry, Diane J. and Coin, Lachlan and Davis, Oliver S. P. and Elliott, Paul and Flexeder, Claudia and Frayling, Tim and Gaillard, Romy and Groen-Blokhuis, Maria and Goh, Liang-Kee and Haworth, Claire M. A. and Hadley, Dexter and Hebebrand, Johannes and Hinney, Anke and Hirschhorn, Joel N. and Holloway, John W. and Holst, Claus and Hottenga, Jouke Jan and Horikoshi, Momoko and Huikari, Ville and Hypponen, Elina and Kilpelainen, Tuomas O. and Kirin, Mirna and Kowgier, Matthew and Lakka, Hanna-Maaria and Lange, Leslie A. and Lawlor, Debbie A. and Lehtimaki, Terho and Lewin, Alex and Lindgren, Cecilia and Lindi, Virpi and Maggi, Reedik and Marsh, Julie and Middeldorp, Christel and Millwood, Iona and Murray, Jeffrey C. and Nivard, Michel and Nohr, Ellen Aagaard and Ntalla, Ioanna and Oken, Emily and Panoutsopoulou, Kalliope and Pararajasingham, Jennifer and Rodriguez, Alina and Salem, Rany M. and Sebert, Sylvain and Siitonen, Niina and Strachan, David P. and Teo, Yik-Ying and Valcarcel, Beatriz and Willemsen, Gonneke and Zeggini, Eleftheria and Boomsma, Dorret I. and Cooper, Cyrus and Gillman, Matthew and Hocher, Berthold and Lakka, Timo A. and Mohlke, Karen L. and Dedoussis, George V. and Ong, Ken K. and Pearson, Ewan R. and Price, Thomas S. and Power, Chris and Raitakari, Olli T. and Saw, Seang-Mei and Scherag, Andre and Simell, Olli and Sorensen, Thorkild I. A. and Wilson, James F.}, title = {Common variants at 6q22 and 17q21 are associated with intracranial volume}, series = {Nature genetics}, volume = {44}, journal = {Nature genetics}, number = {5}, publisher = {Nature Publ. Group}, address = {New York}, organization = {Early Growth Genetics EGG Consorti, Cohorts Heart Aging Res Genomic Ep}, issn = {1061-4036}, doi = {10.1038/ng.2245}, pages = {539 -- +}, year = {2012}, abstract = {During aging, intracranial volume remains unchanged and represents maximally attained brain size, while various interacting biological phenomena lead to brain volume loss. Consequently, intracranial volume and brain volume in late life reflect different genetic influences. Our genome-wide association study (GWAS) in 8,175 community-dwelling elderly persons did not reveal any associations at genome-wide significance (P < 5 x 10(-8)) for brain volume. In contrast, intracranial volume was significantly associated with two loci: rs4273712 (P = 3.4 x 10(-11)), a known height-associated locus on chromosome 6q22, and rs9915547 (P = 1.5 x 10(-12)), localized to the inversion on chromosome 17q21. We replicated the associations of these loci with intracranial volume in a separate sample of 1,752 elderly persons (P = 1.1 x 10(-3) for 6q22 and 1.2 x 10(-3) for 17q21). Furthermore, we also found suggestive associations of the 17q21 locus with head circumference in 10,768 children (mean age of 14.5 months). Our data identify two loci associated with head size, with the inversion at 17q21 also likely to be involved in attaining maximal brain size.}, language = {en} } @misc{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Reihe der Digital Engineering Fakult{\"a}t}, number = {19}, doi = {10.25932/publishup-56537}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565379}, pages = {14}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{GorskiJungLietal.2020, author = {Gorski, Mathias and Jung, Bettina and Li, Yong and Matias-Garcia, Pamela R. and Wuttke, Matthias and Coassin, Stefan and Thio, Chris H. L. and Kleber, Marcus E. and Winkler, Thomas W. and Wanner, Veronika and Chai, Jin-Fang and Chu, Audrey Y. and Cocca, Massimiliano and Feitosa, Mary F. and Ghasemi, Sahar and Hoppmann, Anselm and Horn, Katrin and Li, Man and Nutile, Teresa and Scholz, Markus and Sieber, Karsten B. and Teumer, Alexander and Tin, Adrienne and Wang, Judy and Tayo, Bamidele O. and Ahluwalia, Tarunveer S. and Almgren, Peter and Bakker, Stephan J. L. and Banas, Bernhard and Bansal, Nisha and Biggs, Mary L. and Boerwinkle, Eric and B{\"o}ttinger, Erwin and Brenner, Hermann and Carroll, Robert J. and Chalmers, John and Chee, Miao-Li and Chee, Miao-Ling and Cheng, Ching-Yu and Coresh, Josef and de Borst, Martin H. and Degenhardt, Frauke and Eckardt, Kai-Uwe and Endlich, Karlhans and Franke, Andre and Freitag-Wolf, Sandra and Gampawar, Piyush and Gansevoort, Ron T. and Ghanbari, Mohsen and Gieger, Christian and Hamet, Pavel and Ho, Kevin and Hofer, Edith and Holleczek, Bernd and Foo, Valencia Hui Xian and Hutri-Kahonen, Nina and Hwang, Shih-Jen and Ikram, M. Arfan and Josyula, Navya Shilpa and Kahonen, Mika and Khor, Chiea-Chuen and Koenig, Wolfgang and Kramer, Holly and Kraemer, Bernhard K. and Kuehnel, Brigitte and Lange, Leslie A. and Lehtimaki, Terho and Lieb, Wolfgang and Loos, Ruth J. F. and Lukas, Mary Ann and Lyytikainen, Leo-Pekka and Meisinger, Christa and Meitinger, Thomas and Melander, Olle and Milaneschi, Yuri and Mishra, Pashupati P. and Mononen, Nina and Mychaleckyj, Josyf C. and Nadkarni, Girish N. and Nauck, Matthias and Nikus, Kjell and Ning, Boting and Nolte, Ilja M. and O'Donoghue, Michelle L. and Orho-Melander, Marju and Pendergrass, Sarah A. and Penninx, Brenda W. J. H. and Preuss, Michael H. and Psaty, Bruce M. and Raffield, Laura M. and Raitakari, Olli T. and Rettig, Rainer and Rheinberger, Myriam and Rice, Kenneth M. and Rosenkranz, Alexander R. and Rossing, Peter and Rotter, Jerome and Sabanayagam, Charumathi and Schmidt, Helena and Schmidt, Reinhold and Schoettker, Ben and Schulz, Christina-Alexandra and Sedaghat, Sanaz and Shaffer, Christian M. and Strauch, Konstantin and Szymczak, Silke and Taylor, Kent D. and Tremblay, Johanne and Chaker, Layal and van der Harst, Pim and van der Most, Peter J. and Verweij, Niek and Voelker, Uwe and Waldenberger, Melanie and Wallentin, Lars and Waterworth, Dawn M. and White, Harvey D. and Wilson, James G. and Wong, Tien-Yin and Woodward, Mark and Yang, Qiong and Yasuda, Masayuki and Yerges-Armstrong, Laura M. and Zhang, Yan and Snieder, Harold and Wanner, Christoph and Boger, Carsten A. and Kottgen, Anna and Kronenberg, Florian and Pattaro, Cristian and Heid, Iris M.}, title = {Meta-analysis uncovers genome-wide significant variants for rapid kidney function decline}, series = {Kidney international : official journal of the International Society of Nephrology}, volume = {99}, journal = {Kidney international : official journal of the International Society of Nephrology}, number = {4}, publisher = {Elsevier}, address = {New York}, organization = {Lifelines Cohort Study
Regeneron Genetics Ctr}, issn = {0085-2538}, doi = {10.1016/j.kint.2020.09.030}, pages = {926 -- 939}, year = {2020}, abstract = {Rapid decline of glomerular filtration rate estimated from creatinine (eGFRcrea) is associated with severe clinical endpoints. In contrast to cross-sectionally assessed eGFRcrea, the genetic basis for rapid eGFRcrea decline is largely unknown. To help define this, we meta-analyzed 42 genome-wide association studies from the Chronic Kidney Diseases Genetics Consortium and United Kingdom Biobank to identify genetic loci for rapid eGFRcrea decline. Two definitions of eGFRcrea decline were used: 3 mL/min/1.73m(2)/year or more ("Rapid3"; encompassing 34,874 cases, 107,090 controls) and eGFRcrea decline 25\% or more and eGFRcrea under 60 mL/min/1.73m(2) at follow-up among those with eGFRcrea 60 mL/min/1.73m(2) or more at baseline ("CKDi25"; encompassing 19,901 cases, 175,244 controls). Seven independent variants were identified across six loci for Rapid3 and/or CKDi25: consisting of five variants at four loci with genome-wide significance (near UMOD-PDILT (2), PRKAG2, WDR72, OR2S2) and two variants among 265 known eGFRcrea variants (near GATM, LARP4B). All these loci were novel for Rapid3 and/or CKDi25 and our bioinformatic follow-up prioritized variants and genes underneath these loci. The OR2S2 locus is novel for any eGFRcrea trait including interesting candidates. For the five genome-wide significant lead variants, we found supporting effects for annual change in blood urea nitrogen or cystatin-based eGFR, but not for GATM or (LARP4B). Individuals at high compared to those at low genetic risk (8-14 vs. 0-5 adverse alleles) had a 1.20-fold increased risk of acute kidney injury (95\% confidence interval 1.08-1.33). Thus, our identified loci for rapid kidney function decline may help prioritize therapeutic targets and identify mechanisms and individuals at risk for sustained deterioration of kidney function.}, language = {en} } @article{MusterRileyRothetal.2019, author = {Muster, Sina and Riley, William J. and Roth, Kurt and Langer, Moritz and Aleina, Fabio Cresto and Koven, Charles D. and Lange, Stephan and Bartsch, Annett and Grosse, Guido and Wilson, Cathy J. and Jones, Benjamin M. and Boike, Julia}, title = {Size distributions of arctic waterbodies reveal consistent relations in their statistical moments in space and time}, series = {Frontiers in Earth Science}, volume = {7}, journal = {Frontiers in Earth Science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-6463}, doi = {10.3389/feart.2019.00005}, pages = {15}, year = {2019}, abstract = {Arctic lowlands are characterized by large numbers of small waterbodies, which are known to affect surface energy budgets and the global carbon cycle. Statistical analysis of their size distributions has been hindered by the shortage of observations at sufficiently high spatial resolutions. This situation has now changed with the high-resolution (<5 m) circum-Arctic Permafrost Region Pond and Lake (PeRL) database recently becoming available. We have used this database to make the first consistent, high-resolution estimation of Arctic waterbody size distributions, with surface areas ranging from 0.0001 km(2) (100 m(2)) to 1 km(2). We found that the size distributions varied greatly across the thirty study regions investigated and that there was no single universal size distribution function (including power-law distribution functions) appropriate across all of the study regions. We did, however, find close relationships between the statistical moments (mean, variance, and skewness) of the waterbody size distributions from different study regions. Specifically, we found that the spatial variance increased linearly with mean waterbody size (R-2 = 0.97, p < 2.2e-16) and that the skewness decreased approximately hyperbolically. We have demonstrated that these relationships (1) hold across the 30 Arctic study regions covering a variety of (bio)climatic and permafrost zones, (2) hold over time in two of these study regions for which multi-decadal satellite imagery is available, and (3) can be reproduced by simulating rising water levels in a high-resolution digital elevation model. The consistent spatial and temporal relationships between the statistical moments of the waterbody size distributions underscore the dominance of topographic controls in lowland permafrost areas. These results provide motivation for further analyses of the factors involved in waterbody development and spatial distribution and for investigations into the possibility of using statistical moments to predict future hydrologic dynamics in the Arctic.}, language = {en} } @article{PesicekEngdahlThurberetal.2012, author = {Pesicek, J. D. and Engdahl, E. R. and Thurber, C. H. and DeShon, H. R. and Lange, Dietrich}, title = {Mantle subducting slab structure in the region of the 2010 M8.8 Maule earthquake (30-40 degrees S), Chile}, series = {Geophysical journal international}, volume = {191}, journal = {Geophysical journal international}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0956-540X}, doi = {10.1111/j.1365-246X.2012.05624.x}, pages = {317 -- 324}, year = {2012}, abstract = {We present a new tomographic model of the mantle in the area of the 2010 M8.8 Maule earthquake and surrounding regions. Increased ray coverage provided by the aftershock data allows us to image the detailed subducting slab structure in the mantle, from the region of flat slab subduction north of the Maule rupture to the area of overlapping rupture between the 1960 M9.5 and the 2010 M8.8 events to the south. We have combined teleseismic primary and depth phase arrivals with available local arrivals to better constrain the teleseismic earthquake locations in the region, which we use to conduct nested regionalglobal tomography. The new model reveals the detailed structure of the flat slab and its transition to a more moderately dipping slab in the Maule region. South of the Maule region, a steeply dipping relic slab is imaged from similar to 200 to 1000 km depth that is distinct from the moderately dipping slab above it and from the more northerly slab at similar depths. We interpret the images as revealing both horizontal and vertical tearing of the slab at similar to 38 degrees S to explain the imaged pattern of slab anomalies in the southern portion of the model. In contrast, the transition from a horizontal to moderately subducting slab in the northern portion of the model is imaged as a continuous slab bend. We speculate that the tearing was most likely facilitated by a fracture zone in the downgoing plate or alternatively by a continental scale terrane boundary in the overriding plate.}, language = {en} } @article{LangeBedfordMorenoetal.2014, author = {Lange, Dietrich and Bedford, J. R. and Moreno, M. and Tilmann, F. and B{\´a}ez, Juan Carlos and Bevis, M. and Kr{\"u}ger, Frank}, title = {Comparison of postseismic afterslip models with aftershock seismicity for three subduction-zone earthquakes: Nias 2005, Maule 2010 and Tohoku 2011}, series = {Geophysical journal international}, volume = {199}, journal = {Geophysical journal international}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0956-540X}, doi = {10.1093/gji/ggu292}, pages = {784 -- 799}, year = {2014}, abstract = {We focus on the relation between seismic and total postseismic afterslip following the Maule M-w 8.8 earthquake on 2010 February 27 in central Chile. First, we calculate the cumulative slip released by aftershock seismicity. We do this by summing up the aftershock regions and slip estimated from scaling relations. Comparing the cumulative seismic slip with afterslip modelswe showthat seismic slip of individual aftershocks exceeds locally the inverted afterslip model from geodetic constraints. As the afterslip model implicitly contains the displacements from the aftershocks, this reflects the tendency of afterslip models to smear out the actual slip pattern. However, it also suggests that locally slip for a number of the larger aftershocks exceeds the aseismic slip in spite of the fact that the total equivalent moment of the afterslip exceeds the cumulative moment of aftershocks by a large factor. This effect, seen weakly for the Maule 2010 and also for the Tohoku 2011 earthquake, can be explained by taking into account the uncertainties of the seismicity and afterslip models. In spite of uncertainties, the hypocentral region of the Nias 2005 earthquake is suggested to release a large fraction of moment almost purely seismically. Therefore, these aftershocks are not driven solely by the afterslip but instead their slip areas have probably been stressed by interseismic loading and the mainshock rupture. In a second step, we divide the megathrust of the Maule 2010 rupture into discrete cells and count the number of aftershocks that occur within 50 km of the centre of each cell as a function of time. We then compare this number to a time-dependent afterslip model by defining the 'afterslip to aftershock ratio' (ASAR) for each cell as the slope of the best fitting line when the afterslip at time t is plotted against aftershock count. Although we find a linear relation between afterslip and aftershocks for most cells, there is significant variability in ASAR in both the downdip and along-strike directions of the megathrust. We compare the spatial distribution of ASAR with the spatial distribution of seismic coupling, coseismic slip and Bouguer gravity anomaly, and in each case we find no significant correlation.}, language = {en} } @article{LangePohl2013, author = {Lange, J. and Pohl, Martin}, title = {The average GeV-band emission from gamma-ray bursts}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {551}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {1}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201220652}, pages = {6}, year = {2013}, abstract = {Aims. We analyze the emission in the 0.3-30 GeV energy range of gamma-ray bursts detected with the Fermi Gamma-ray Space Telescope. We concentrate on bursts that were previously only detected with the Gamma-Ray Burst Monitor in the keV energy range. These bursts will then be compared to the bursts that were individually detected with the Large Area Telescope at higher energies. Methods. To estimate the emission of faint GRBs we used nonstandard analysis methods and sum over many GRBs to find an average signal that is significantly above background level. We used a subsample of 99 GRBs listed in the Burst Catalog from the first two years of observation. Results. Although most are not individually detectable, the bursts not detected by the Large Area Telescope on average emit a significant flux in the energy range from 0.3 GeV to 30 GeV, but their cumulative energy fluence is only 8\% of that of all GRBs. Likewise, the GeV-to-MeV flux ratio is less and the GeV-band spectra are softer. We confirm that the GeV-band emission lasts much longer than the emission found in the keV energy range. The average allsky energy flux from GRBs in the GeV band is 6.4 x 10(-4) erg cm(-2) yr(-1) or only similar to 4\% of the energy flux of cosmic rays above the ankle at 10(18.6) eV.}, language = {en} } @article{deVeraBoettgerdelaTorreNoetzeletal.2012, author = {de Vera, Jean-Pierre Paul and B{\"o}ttger, Ute and de la Torre N{\"o}tzel, Rosa and Sanchez, Francisco J. and Grunow, Dana and Schmitz, Nicole and Lange, Caroline and H{\"u}bers, Heinz-Wilhelm and Billi, Daniela and Baque, Mickael and Rettberg, Petra and Rabbow, Elke and Reitz, G{\"u}nther and Berger, Thomas and M{\"o}ller, Ralf and Bohmeier, Maria and Horneck, Gerda and Westall, Frances and J{\"a}nchen, Jochen and Fritz, J{\"o}rg and Meyer, Cornelia and Onofri, Silvano and Selbmann, Laura and Zucconi, Laura and Kozyrovska, Natalia and Leya, Thomas and Foing, Bernard and Demets, Rene and Cockell, Charles S. and Bryce, Casey and Wagner, Dirk and Serrano, Paloma and Edwards, Howell G. M. and Joshi, Jasmin Radha and Huwe, Bj{\"o}rn and Ehrenfreund, Pascale and Elsaesser, Andreas and Ott, Sieglinde and Meessen, Joachim and Feyh, Nina and Szewzyk, Ulrich and Jaumann, Ralf and Spohn, Tilman}, title = {Supporting Mars exploration BIOMEX in Low Earth Orbit and further astrobiological studies on the Moon using Raman and PanCam technology}, series = {Planetary and space science}, volume = {74}, journal = {Planetary and space science}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2012.06.010}, pages = {103 -- 110}, year = {2012}, abstract = {The Low Earth Orbit (LEO) experiment Biology and Mars Experiment (BIOMEX) is an interdisciplinary and international space research project selected by ESA. The experiment will be accommodated on the space exposure facility EXPOSE-R2 on the International Space Station (ISS) and is foreseen to be launched in 2013. The prime objective of BIOMEX is to measure to what extent biomolecules, such as pigments and cellular components, are resistant to and able to maintain their stability under space and Mars-like conditions. The results of BIOMEX will be relevant for space proven biosignature definition and for building a biosignature data base (e.g. the proposed creation of an international Raman library). The library will be highly relevant for future space missions such as the search for life on Mars. The secondary scientific objective is to analyze to what extent terrestrial extremophiles are able to survive in space and to determine which interactions between biological samples and selected minerals (including terrestrial, Moon- and Mars analogs) can be observed under space and Mars-like conditions. In this context, the Moon will be an additional platform for performing similar experiments with negligible magnetic shielding and higher solar and galactic irradiation compared to LEO. Using the Moon as an additional astrobiological exposure platform to complement ongoing astrobiological LEO investigations could thus enhance the chances of detecting organic traces of life on Mars. We present a lunar lander mission with two related objectives: a lunar lander equipped with Raman and PanCam instruments which can analyze the lunar surface and survey an astrobiological exposure platform. This dual use of testing mission technology together with geo- and astrobiological analyses will significantly increase the science return, and support the human preparation objectives. It will provide knowledge about the Moon's surface itself and, in addition, monitor the stability of life-markers, such as cells, cell components and pigments, in an extraterrestrial environment with much closer radiation properties to the surface of Mars. The combination of a Raman data base of these data together with data from LEO and space simulation experiments, will lead to further progress on the analysis and interpretation of data that we will obtain from future Moon and Mars exploration missions.}, language = {en} }