@article{PenaAnguloNadalRomeroGonzalezHidalgoetal.2019, author = {Pena-Angulo, D. and Nadal-Romero, E. and Gonzalez-Hidalgo, J. C. and Albaladejo, J. and Andreu, V and Bagarello, V and Barhi, H. and Batalla, R. J. and Bernal, S. and Bienes, R. and Campo, J. and Campo-Bescos, M. A. and Canatario-Duarte, A. and Canton, Y. and Casali, J. and Castillo, V and Cerda, Artemi and Cheggour, A. and Cid, Patricio and Cortesi, N. and Desir, G. and Diaz-Pereira, E. and Espigares, T. and Estrany, Joan and Fernandez-Raga, M. and Ferreira, Carla S. S. and Ferro, Vito and Gallart, Francesc and Gimenez, R. and Gimeno, E. and Gomez, J. A. and Gomez-Gutierrez, A. and Gomez-Macpherson, H. and Gonzalez-Pelayo, O. and Hueso-Gonzalez, P. and Kairis, O. and Karatzas, G. P. and Klotz, S. and Kosmas, C. and Lana-Renault, Noemi and Lasanta, T. and Latron, J. and Lazaro, R. and Le Bissonnais, Y. and Le Bouteiller, C. and Licciardello, F. and Lopez-Tarazon, Jos{\´e} Andr{\´e}s and Lucia, A. and Marin, C. and Marques, M. J. and Martinez-Fernandez, J. and Martinez-Mena, M. and Martinez-Murillo, J. F. and Mateos, L. and Mathys, N. and Merino-Martin, L. and Moreno-de las Heras, M. and Moustakas, N. and Nicolau, J. M. and Novara, A. and Pampalone, V and Raclot, D. and Rodriguez-Blanco, M. L. and Rodrigo-Comino, Jes{\´u}s and Romero-Diaz, A. and Roose, E. and Rubio, J. L. and Ruiz-Sinoga, J. D. and Schnabel, S. and Senciales-Gonzalez, J. M. and Simonneaux, V and Sole-Benet, A. and Taguas, E. and Taboada-Castro, M. M. and Taboada-Castro, M. T. and Todisco, Francesca and Ubeda, X. and Varouchakis, E. A. and Vericat, Damia and Wittenberg, L. and Zabaleta, A. and Zorn, M.}, title = {Spatial variability of the relationships of runoff and sediment yield with weather types throughout the Mediterranean basin}, series = {Journal of hydrology}, volume = {571}, journal = {Journal of hydrology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2019.01.059}, pages = {390 -- 405}, year = {2019}, abstract = {Soil degradation by water is a serious environmental problem worldwide, with specific climatic factors being the major causes. We investigated the relationships between synoptic atmospheric patterns (i.e. weather types, WTs) and runoff, erosion and sediment yield throughout the Mediterranean basin by analyzing a large database of natural rainfall events at 68 research sites in 9 countries. Principal Component Analysis (PCA) was used to identify spatial relationships of the different WTs including three hydro-sedimentary variables: rainfall, runoff, and sediment yield (SY, used to refer to both soil erosion measured at plot scale and sediment yield registered at catchment scale). The results indicated 4 spatial classes of rainfall and runoff: (a) northern sites dependent on North (N) and North West (NW) flows; (b) eastern sites dependent on E and NE flows; (c) southern sites dependent on S and SE flows; and, finally, (d) western sites dependent on W and SW flows. Conversely, three spatial classes are identified for SY characterized by: (a) N and NE flows in northern sites (b) E flows in eastern sites, and (c) W and SW flows in western sites. Most of the rainfall, runoff and SY occurred during a small number of daily events, and just a few WTs accounted for large percentages of the total. Our results confirm that characterization by WT improves understanding of the general conditions under which runoff and SY occur, and provides useful information for understanding the spatial variability of runoff, and SY throughout the Mediterranean basin. The approach used here could be useful to aid of the design of regional water management and soil conservation measures.}, language = {en} } @article{EstradaDelvenneHatanoetal.2018, author = {Estrada, Ernesto and Delvenne, Jean-Charles and Hatano, Naomichi and Mateos, Jose L. and Metzler, Ralf and Riascos, Alejandro P. and Schaub, Michael T.}, title = {Random multi-hopper model}, series = {Journal of Complex Networks}, volume = {6}, journal = {Journal of Complex Networks}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2051-1310}, doi = {10.1093/comnet/cnx043}, pages = {382 -- 403}, year = {2018}, abstract = {We develop a mathematical model considering a random walker with long-range hops on arbitrary graphs. The random multi-hopper can jump to any node of the graph from an initial position, with a probability that decays as a function of the shortest-path distance between the two nodes in the graph. We consider here two decaying functions in the form of Laplace and Mellin transforms of the shortest-path distances. We prove that when the parameters of these transforms approach zero asymptotically, the hitting time in the multi-hopper approaches the minimum possible value for a normal random walker. We show by computational experiments that the multi-hopper explores a graph with clusters or skewed degree distributions more efficiently than a normal random walker. We provide computational evidences of the advantages of the random multi-hopper model with respect to the normal random walk by studying deterministic, random and real-world networks.}, language = {en} } @article{ZaritskyCourtoisMunozMateosetal.2014, author = {Zaritsky, Dennis and Courtois, Helene and Munoz-Mateos, Juan-Carlos and Sorce, Jenny and Erroz-Ferrer, S. and Comeron, S. and Gadotti, D. A. and Gil De Paz, A. and Hinz, J. L. and Laurikainen, E. and Kim, T. and Laine, J. and Menendez-Delmestre, K. and Mizusawa, T. and Regan, M. W. and Salo, H. and Seibert, M. and Sheth, K. and Athanassoula, E. and Bosma, A. and Cisternas, M. and Ho, Luis C. and Holwerda, B.}, title = {The baryonic Tully-Fisher relationship for S(4)G galaxies and the "condensed" baryon fraction of galaxies}, series = {The astronomical journal}, volume = {147}, journal = {The astronomical journal}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-6256}, doi = {10.1088/0004-6256/147/6/134}, pages = {11}, year = {2014}, abstract = {We combine data from the Spitzer Survey for Stellar Structure in Galaxies, a recently calibrated empirical stellar mass estimator from Eskew et al., and an extensive database of Hi spectral line profiles to examine the baryonic Tully-Fisher (BTF) relation. We find (1) that the BTF has lower scatter than the classic Tully-Fisher (TF) relation and is better described as a linear relationship, confirming similar previous results, (2) that the inclusion of a radial scale in the BTF decreases the scatter but only modestly, as seen previously for the TF relation, and (3) that the slope of the BTF, which we find to be 3.5 +/- 0.2 (Delta log M-baryon/Delta log v(c)), implies that on average a nearly constant fraction (similar to 0.4) of all baryons expected to be in a halo are "condensed" onto the central region of rotationally supported galaxies. The condensed baryon fraction, M-baryon/M-total, is, to our measurement precision, nearly independent of galaxy circular velocity (our sample spans circular velocities, vc, between 60 and 250 km s(-1), but is extended to v(c) similar to 10 km s(-1) using data from the literature). The observed galaxy-to-galaxy scatter in this fraction is generally <= a factor of 2 despite fairly liberal selection criteria. These results imply that cooling and heating processes, such as cold versus hot accretion, mass loss due to stellar winds, and active galactic nucleus driven feedback, to the degree that they affect the global galactic properties involved in the BTF, are independent of halo mass for galaxies with 10 < v(c) < 250 km s(-1) and typically introduce no more than a factor of two range in the resulting M-baryon/M-total. Recent simulations by Aumer et al. of a small sample of disk galaxies are in excellent agreement with our data, suggesting that current simulations are capable of reproducing the global properties of individual disk galaxies. More detailed comparison to models using the BTF holds great promise, but awaits improved determinations of the stellar masses.}, language = {en} }