@article{PiontekKalkuhlKriegleretal.2019, author = {Piontek, Franziska and Kalkuhl, Matthias and Kriegler, Elmar and Schultes, Anselm and Leimbach, Marian and Edenhofer, Ottmar and Bauer, Nico}, title = {Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling}, series = {Environmental \& resource economics : the official journal of the European Association of Environmental and Resource Economists}, volume = {73}, journal = {Environmental \& resource economics : the official journal of the European Association of Environmental and Resource Economists}, number = {4}, publisher = {Springer}, address = {Dordrecht}, issn = {0924-6460}, doi = {10.1007/s10640-018-00306-7}, pages = {1357 -- 1385}, year = {2019}, abstract = {Despite increasing empirical evidence of strong links between climate and economic growth, there is no established model to describe the dynamics of how different types of climate shocks affect growth patterns. Here we present the first comprehensive, comparative analysis of the long-term dynamics of one-time, temporary climate shocks on production factors, and factor productivity, respectively, in a Ramsey-type growth model. Damages acting directly on production factors allow us to study dynamic effects on factor allocation, savings and economic growth. We find that the persistence of impacts on economic activity is smallest for climate shocks directly impacting output, and successively increases for direct damages on capital, loss of labor and productivity shocks, related to different responses in savings rates and factor-specific growth. Recurring shocks lead to large welfare effects and long-term growth effects, directly linked to the persistence of individual shocks. Endogenous savings and shock anticipation both have adaptive effects but do not eliminate differences between impact channels or significantly lower the dissipation time. Accounting for endogenous growth mechanisms increases the effects. We also find strong effects on income shares, important for distributional implications. This work fosters conceptual understanding of impact dynamics in growth models, opening options for links to empirics.}, language = {en} } @article{KikstraNichollsSmithetal.2022, author = {Kikstra, Jarmo S. and Nicholls, Zebedee R. J. and Smith, Christopher J. and Lewis, Jared and Lamboll, Robin D. and Byers, Edward and Sandstad, Marit and Meinshausen, Malte and Gidden, Matthew J. and Rogelj, Joeri and Kriegler, Elmar and Peters, Glen P. and Fuglestvedt, Jan S. and Skeie, Ragnhild B. and Samset, Bj{\o}rn H. and Wienpahl, Laura and van Vuuren, Detlef P. and van der Wijst, Kaj-Ivar and Al Khourdajie, Alaa and Forster, Piers M. and Reisinger, Andy and Schaeffer, Roberto and Riahi, Keywan}, title = {The IPCC Sixth Assessment Report WGIII climate assessment of mitigation pathways}, series = {Geoscientific model development}, volume = {15}, journal = {Geoscientific model development}, number = {24}, publisher = {Copernicus}, address = {Katlenburg-Lindau}, issn = {1991-959X}, doi = {10.5194/gmd-15-9075-2022}, pages = {9075 -- 9109}, year = {2022}, abstract = {While the Intergovernmental Panel on Climate Change (IPCC) physical science reports usually assess a handful of future scenarios, the Working Group III contribution on climate mitigation to the IPCC's Sixth Assessment Report (AR6 WGIII) assesses hundreds to thousands of future emissions scenarios. A key task in WGIII is to assess the global mean temperature outcomes of these scenarios in a consistent manner, given the challenge that the emissions scenarios from different integrated assessment models (IAMs) come with different sectoral and gas-to-gas coverage and cannot all be assessed consistently by complex Earth system models. In this work, we describe the "climate-assessment" workflow and its methods, including infilling of missing emissions and emissions harmonisation as applied to 1202 mitigation scenarios in AR6 WGIII. We evaluate the global mean temperature projections and effective radiative forcing (ERF) characteristics of climate emulators FaIRv1.6.2 and MAGICCv7.5.3 and use the CICERO simple climate model (CICERO-SCM) for sensitivity analysis. We discuss the implied overshoot severity of the mitigation pathways using overshoot degree years and look at emissions and temperature characteristics of scenarios compatible with one possible interpretation of the Paris Agreement. We find that the lowest class of emissions scenarios that limit global warming to "1.5 ∘C (with a probability of greater than 50 \%) with no or limited overshoot" includes 97 scenarios for MAGICCv7.5.3 and 203 for FaIRv1.6.2. For the MAGICCv7.5.3 results, "limited overshoot" typically implies exceedance of median temperature projections of up to about 0.1 ∘C for up to a few decades before returning to below 1.5 ∘C by or before the year 2100. For more than half of the scenarios in this category that comply with three criteria for being "Paris-compatible", including net-zero or net-negative greenhouse gas (GHG) emissions, median temperatures decline by about 0.3-0.4 ∘C after peaking at 1.5-1.6 ∘C in 2035-2055. We compare the methods applied in AR6 with the methods used for SR1.5 and discuss their implications. This article also introduces a "climate-assessment" Python package which allows for fully reproducing the IPCC AR6 WGIII temperature assessment. This work provides a community tool for assessing the temperature outcomes of emissions pathways and provides a basis for further work such as extending the workflow to include downscaling of climate characteristics to a regional level and calculating impacts.}, language = {en} } @article{BertramRiahiHilaireetal.2021, author = {Bertram, Christoph and Riahi, Keywan and Hilaire, J{\´e}r{\^o}me and Bosetti, Valentina and Drouet, Laurent and Fricko, Oliver and Malik, Aman and Nogueira, Larissa Pupo and van der Zwaan, Bob and van Ruijven, Bas and van Vuuren, Detlef P. and Weitzel, Matthias and Longa, Francesco Dalla and de Boer, Harmen-Sytze and Emmerling, Johannes and Fosse, Florian and Fragkiadakis, Kostas and Harmsen, Mathijs and Keramidas, Kimon and Kishimoto, Paul Natsuo and Kriegler, Elmar and Krey, Volker and Paroussos, Leonidas and Saygin, Deger and Vrontisi, Zoi and Luderer, Gunnar}, title = {Energy system developments and investments in the decisive decade for the Paris Agreement goals}, series = {Environmental research letters}, volume = {16}, journal = {Environmental research letters}, number = {7}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac09ae}, pages = {12}, year = {2021}, abstract = {The Paris Agreement does not only stipulate to limit the global average temperature increase to well below 2 °C, it also calls for 'making finance flows consistent with a pathway towards low greenhouse gas emissions'. Consequently, there is an urgent need to understand the implications of climate targets for energy systems and quantify the associated investment requirements in the coming decade. A meaningful analysis must however consider the near-term mitigation requirements to avoid the overshoot of a temperature goal. It must also include the recently observed fast technological progress in key mitigation options. Here, we use a new and unique scenario ensemble that limit peak warming by construction and that stems from seven up-to-date integrated assessment models. This allows us to study the near-term implications of different limits to peak temperature increase under a consistent and up-to-date set of assumptions. We find that ambitious immediate action allows for limiting median warming outcomes to well below 2 °C in all models. By contrast, current nationally determined contributions for 2030 would add around 0.2 °C of peak warming, leading to an unavoidable transgression of 1.5 °C in all models, and 2 °C in some. In contrast to the incremental changes as foreseen by current plans, ambitious peak warming targets require decisive emission cuts until 2030, with the most substantial contribution to decarbonization coming from the power sector. Therefore, investments into low-carbon power generation need to increase beyond current levels to meet the Paris goals, especially for solar and wind technologies and related system enhancements for electricity transmission, distribution and storage. Estimates on absolute investment levels, up-scaling of other low-carbon power generation technologies and investment shares in less ambitious scenarios vary considerably across models. In scenarios limiting peak warming to below 2 °C, while coal is phased out quickly, oil and gas are still being used significantly until 2030, albeit at lower than current levels. This requires continued investments into existing oil and gas infrastructure, but investments into new fields in such scenarios might not be needed. The results show that credible and effective policy action is essential for ensuring efficient allocation of investments aligned with medium-term climate targets.}, language = {en} } @article{HarmsenKrieglervanVuurenetal.2021, author = {Harmsen, Mathijs and Kriegler, Elmar and van Vuuren, Detlef P. and van der Wijst, Kaj-Ivar and Luderer, Gunnar and Cui, Ryna and Dessens, Olivier and Drouet, Laurent and Emmerling, Johannes and Morris, Jennifer Faye and Fosse, Florian and Fragkiadakis, Dimitris and Fragkiadakis, Kostas and Fragkos, Panagiotis and Fricko, Oliver and Fujimori, Shinichiro and Gernaat, David and Guivarch, C{\´e}line and Iyer, Gokul and Karkatsoulis, Panagiotis and Keppo, Ilkka and Keramidas, Kimon and K{\"o}berle, Alexandre and Kolp, Peter and Krey, Volker and Kr{\"u}ger, Christoph and Leblanc, Florian and Mittal, Shivika and Paltsev, Sergey and Rochedo, Pedro and van Ruijven, Bas J. and Sands, Ronald D. and Sano, Fuminori and Strefler, Jessica and Arroyo, Eveline Vasquez and Wada, Kenichi and Zakeri, Behnam}, title = {Integrated assessment model diagnostics}, series = {Environmental research letters}, volume = {16}, journal = {Environmental research letters}, number = {5}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/abf964}, pages = {13}, year = {2021}, abstract = {Integrated assessment models (IAMs) form a prime tool in informing about climate mitigation strategies. Diagnostic indicators that allow comparison across these models can help describe and explain differences in model projections. This increases transparency and comparability. Earlier, the IAM community has developed an approach to diagnose models (Kriegler (2015 Technol. Forecast. Soc. Change 90 45-61)). Here we build on this, by proposing a selected set of well-defined indicators as a community standard, to systematically and routinely assess IAM behaviour, similar to metrics used for other modeling communities such as climate models. These indicators are the relative abatement index, emission reduction type index, inertia timescale, fossil fuel reduction, transformation index and cost per abatement value. We apply the approach to 17 IAMs, assessing both older as well as their latest versions, as applied in the IPCC 6th Assessment Report. The study shows that the approach can be easily applied and used to indentify key differences between models and model versions. Moreover, we demonstrate that this comparison helps to link model behavior to model characteristics and assumptions. We show that together, the set of six indicators can provide useful indication of the main traits of the model and can roughly indicate the general model behavior. The results also show that there is often a considerable spread across the models. Interestingly, the diagnostic values often change for different model versions, but there does not seem to be a distinct trend.}, language = {en} } @article{RiahiBertramHuppmannetal.2021, author = {Riahi, Keywan and Bertram, Christoph and Huppmann, Daniel and Rogelj, Joeri and Bosetti, Valentina and Cabardos, Anique-Marie and Deppermann, Andre and Drouet, Laurent and Frank, Stefan and Fricko, Oliver and Fujimori, Shinichiro and Harmsen, Mathijs and Hasegawa, Tomoko and Krey, Volker and Luderer, Gunnar and Paroussos, Leonidas and Schaeffer, Roberto and Weitzel, Matthias and van der Zwaan, Bob and Vrontisi, Zoi and Longa, Francesco Dalla and Despr{\´e}s, Jacques and Fosse, Florian and Fragkiadakis, Kostas and Gusti, Mykola and Humpen{\"o}der, Florian and Keramidas, Kimon and Kishimoto, Paul and Kriegler, Elmar and Meinshausen, Malte and Nogueira, Larissa Pupo and Oshiro, Ken and Popp, Alexander and Rochedo, Pedro R. R. and {\"U}nl{\"u}, Gamze and van Ruijven, Bas and Takakura, Junya and Tavoni, Massimo and van Vuuren, Detlef P. and Zakeri, Behnam}, title = {Cost and attainability of meeting stringent climate targets without overshoot}, series = {Nature climate change}, volume = {11}, journal = {Nature climate change}, number = {12}, publisher = {Nature Publishing Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-021-01215-2}, pages = {1063 -- 1069}, year = {2021}, abstract = {Global emissions scenarios play a critical role in the assessment of strategies to mitigate climate change. The current scenarios, however, are criticized because they feature strategies with pronounced overshoot of the global temperature goal, requiring a long-term repair phase to draw temperatures down again through net-negative emissions. Some impacts might not be reversible. Hence, we explore a new set of net-zero CO2 emissions scenarios with limited overshoot. We show that upfront investments are needed in the near term for limiting temperature overshoot but that these would bring long-term economic gains. Our study further identifies alternative configurations of net-zero CO2 emissions systems and the roles of different sectors and regions for balancing sources and sinks. Even without net-negative emissions, CO2 removal is important for accelerating near-term reductions and for providing an anthropogenic sink that can offset the residual emissions in sectors that are hard to abate.}, language = {en} } @article{SoergelKrieglerWeindletal.2021, author = {Soergel, Bjoern and Kriegler, Elmar and Weindl, Isabelle and Rauner, Sebastian and Dirnaichner, Alois and Ruhe, Constantin and Hofmann, Matthias and Bauer, Nico and Bertram, Christoph and Bodirsky, Benjamin Leon and Leimbach, Marian and Leininger, Julia and Levesque, Antoine and Luderer, Gunnar and Pehl, Michaja and Wingens, Christopher and Baumstark, Lavinia and Beier, Felicitas and Dietrich, Jan Philipp and Humpen{\"o}der, Florian and von Jeetze, Patrick and Klein, David and Koch, Johannes and Pietzcker, Robert C. and Strefler, Jessica and Lotze-Campen, Hermann and Popp, Alexander}, title = {A sustainable development pathway for climate action within the UN 2030 Agenda}, series = {Nature climate change}, volume = {11}, journal = {Nature climate change}, number = {8}, publisher = {Nature Publishing Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-021-01098-3}, pages = {656 -- 664}, year = {2021}, abstract = {Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries.}, language = {en} } @article{WilsonGuivarchKriegleretal.2021, author = {Wilson, Charlie and Guivarch, C{\´e}line and Kriegler, Elmar and van Ruijven, Bas and van Vuuren, Detlef P. and Krey, Volker and Schwanitz, Valeria Jana and Thompson, Erica L.}, title = {Evaluating process-based integrated assessment models of climate change mitigation}, series = {Climatic change}, volume = {166}, journal = {Climatic change}, number = {1-2}, publisher = {Springer Science + Business Media B.V.}, address = {Dordrecht}, issn = {0165-0009}, doi = {10.1007/s10584-021-03099-9}, pages = {22}, year = {2021}, abstract = {Process-based integrated assessment models (IAMs) project long-term transformation pathways in energy and land-use systems under what-if assumptions. IAM evaluation is necessary to improve the models' usefulness as scientific tools applicable in the complex and contested domain of climate change mitigation. We contribute the first comprehensive synthesis of process-based IAM evaluation research, drawing on a wide range of examples across six different evaluation methods including historical simulations, stylised facts, and model diagnostics. For each evaluation method, we identify progress and milestones to date, and draw out lessons learnt as well as challenges remaining. We find that each evaluation method has distinctive strengths, as well as constraints on its application. We use these insights to propose a systematic evaluation framework combining multiple methods to establish the appropriateness, interpretability, credibility, and relevance of process-based IAMs as useful scientific tools for informing climate policy. We also set out a programme of evaluation research to be mainstreamed both within and outside the IAM community.}, language = {en} } @article{SoergelKrieglerBodirskyetal.2021, author = {Soergel, Bjoern and Kriegler, Elmar and Bodirsky, Benjamin Leon and Bauer, Nico and Leimbach, Marian and Popp, Alexander}, title = {Combining ambitious climate policies with efforts to eradicate poverty}, series = {Nature Communications}, volume = {12}, journal = {Nature Communications}, publisher = {Nature Publishing Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-021-22315-9}, pages = {12}, year = {2021}, abstract = {Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 degrees C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (-6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries. Ambitious climate policies can negatively impact the global poor by affecting income, food and energy prices. Here, the authors quantify this effect, and show that it can be compensated by national redistribution of the carbon pricing revenues in combination with international climate finance.}, language = {en} } @article{MerfortBauerHumpenoederetal.2023, author = {Merfort, Leon and Bauer, Nico and Humpen{\"o}der, Florian and Klein, David and Strefler, Jessica and Popp, Alexander and Luderer, Gunnar and Kriegler, Elmar}, title = {Bioenergy-induced land-use-change emissions with sectorally fragmented policies}, series = {Nature climate change}, volume = {13}, journal = {Nature climate change}, number = {7}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-023-01697-2}, pages = {685 -- 692}, year = {2023}, abstract = {Controlling bioenergy-induced land-use-change emissions is key to exploiting bioenergy for climate change mitigation. However, the effect of different land-use and energy sector policies on specific bioenergy emissions has not been studied so far. Using the global integrated assessment model REMIND-MAgPIE, we derive a biofuel emission factor (EF) for different policy frameworks. We find that a uniform price on emissions from both sectors keeps biofuel emissions at 12 kg CO2 GJ-1. However, without land-use regulation, the EF increases substantially (64 kg CO2 GJ-1 over 80 years, 92 kg CO2 GJ-1 over 30 years). We also find that comprehensive coverage (>90\%) of carbon-rich land areas worldwide is key to containing land-use emissions. Pricing emissions indirectly on the level of bioenergy consumption reduces total emissions by cutting bioenergy demand but fails to reduce the average EF. In the absence of comprehensive and timely land-use regulation, bioenergy thus may contribute less to climate change mitigation than assumed previously.}, language = {en} } @article{MerfortBauerHumpenoederetal.2023, author = {Merfort, Leon and Bauer, Nico and Humpen{\"o}der, Florian and Klein, David and Strefler, Jessica and Popp, Alexander and Luderer, Gunnar and Kriegler, Elmar}, title = {State of global land regulation inadequate to control biofuel land-use-change emissions}, series = {Nature climate change}, volume = {13}, journal = {Nature climate change}, number = {7}, publisher = {Nature Publ. Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-023-01711-7}, pages = {610 -- 612}, year = {2023}, abstract = {Under current land-use regulation, carbon dioxide emissions from biofuel production exceed those from fossil diesel combustion. Therefore, international agreements need to ensure the effective and globally comprehensive protection of natural land before modern bioenergy can effectively contribute to achieving carbon neutrality.}, language = {en} }