@article{FrascaRojasSalewskietal.2012, author = {Frasca, Stefano and Rojas, Oscar and Salewski, Johannes and Neumann, Bettina and Stiba, Konstanze and Weidinger, Inez M. and Tiersch, Brigitte and Leimk{\"u}hler, Silke and Koetz, Joachim and Wollenberger, Ursula}, title = {Human sulfite oxidase electrochemistry on gold nanoparticles modified electrode}, series = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, volume = {87}, journal = {Bioelectrochemistry : an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry ; official journal of the Bioelectrochemical Society}, publisher = {Elsevier}, address = {Lausanne}, issn = {1567-5394}, doi = {10.1016/j.bioelechem.2011.11.012}, pages = {33 -- 41}, year = {2012}, abstract = {The present study reports a facile approach for sulfite biosensing, based on enhanced direct electron transfer of a human sulfite oxidase (hSO) immobilized on a gold nanoparticles modified electrode. The spherical core shell AuNPs were prepared via a new method by reduction of HAuCl4 with branched poly(ethyleneimine) in an ionic liquids resulting particles with a diameter less than 10 nm. These nanoparticles were covalently attached to a mercaptoundecanoic acid modified Au-electrode where then hSO was adsorbed and an enhanced interfacial electron transfer and electrocatalysis was achieved. UV/Vis and resonance Raman spectroscopy, in combination with direct protein voltammetry, are employed for the characterization of the system and reveal no perturbation of the structural integrity of the redox protein. The proposed biosensor exhibited a quick steady-state current response, within 2 s, a linear detection range between 0.5 and 5.4 mu M with a high sensitivity (1.85 nA mu M-1). The investigated system provides remarkable advantages in the possibility to work at low applied potential and at very high ionic strength. Therefore these properties could make the proposed system useful in the development of bioelectronic devices and its application in real samples.}, language = {en} } @article{SivanesanKalaivaniFischeretal.2012, author = {Sivanesan, Arumugam and Kalaivani, Govindasamy and Fischer, Anna and Stiba, Konstanze and Leimk{\"u}hler, Silke and Weidinger, Inez M.}, title = {Complementary surface-enhanced resonance raman Spectroscopic Biodetection of mixed protein solutions by Chitosan- and Silica-Coated Plasmon-Tuned Silver Nanoparticles}, series = {Analytical chemistry}, volume = {84}, journal = {Analytical chemistry}, number = {13}, publisher = {American Chemical Society}, address = {Washington}, issn = {0003-2700}, doi = {10.1021/ac301001a}, pages = {5759 -- 5764}, year = {2012}, abstract = {Silver nanoparticles with identical plasmonic properties but different surface functionalities are synthesized and tested as chemically selective surface-enhanced resonance Raman (SERR) amplifiers in a two-component protein solution. The surface plasmon resonances of the particles are tuned to 413 nm to match the molecular resonance of protein heme cofactors. Biocompatible functionalization of the nanoparticles with a thin film of chitosan yields selective SERR enhancement of the anionic protein cytochrome b(5), whereas functionalization with SiO2 amplifies only the spectra of the cationic protein cytochrome c. As a result, subsequent addition of the two differently functionalized particles yields complementary information on the same mixed protein sample solution. Finally, the applicability of chitosan-coated Ag nanoparticles for protein separation was tested by in situ resonance Raman spectroscopy.}, language = {en} } @article{SarauliXuDietzeletal.2012, author = {Sarauli, David and Xu, Chenggang and Dietzel, Birgit and Stiba, Konstanze and Leimk{\"u}hler, Silke and Schulz, Burkhard and Lisdat, Fred}, title = {Thin films of substituted polyanilines interactions with biomolecular systems}, series = {Soft matter}, volume = {8}, journal = {Soft matter}, number = {14}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c2sm07261k}, pages = {3848 -- 3855}, year = {2012}, abstract = {We use substituted polyanilines for the construction of new polymer electrodes for interaction studies with the redox protein cytochrome c (cyt c) and the enzyme sulfite oxidase (SO). For these purposes four different polyaniline copolymers are chemically synthesized. Three of them are copolymers, containing 2-methoxyaniline-5-sulfonic acid with variable ratios of aniline; the fourth copolymer consists of 3-amino-benzoic acid and aniline. The results show that all polymers are suitable for being immobilized as thin stable films on gold wire and indium tin oxide (ITO) electrode surfaces from DMSO solution. This can be demonstrated by cyclic voltammetry and UV-Vis spectroscopy measurements. Moreover, cyt c can be electrochemically detected not only in solution, but also immobilized on top of the polymer films. Furthermore, the appearance of a significant catalytic current has been demonstrated for the sulfonated polyanilines, when the polymer-coated protein electrode is being measured upon addition of sulfite oxidase, confirming the establishment of a bioanalytical signal chain. Best results have been obtained for the polymer with highest sulfonation grade. The redox switching of the polymer by the enzymatic reaction can also be analyzed by following the spectral properties of the polymer electrode.}, language = {en} } @article{SarauliRiedelWettsteinetal.2012, author = {Sarauli, David and Riedel, Marc and Wettstein, Christoph and Hahn, Robert and Stiba, Konstanze and Wollenberger, Ursula and Leimk{\"u}hler, Silke and Schmuki, Patrik and Lisdat, Fred}, title = {Semimetallic TiO2 nanotubes new interfaces for bioelectrochemical enzymatic catalysis}, series = {Journal of materials chemistry}, volume = {22}, journal = {Journal of materials chemistry}, number = {11}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0959-9428}, doi = {10.1039/c2jm16427b}, pages = {4615 -- 4618}, year = {2012}, abstract = {Different self-organized TiO2 nanotube structures are shown to represent new interfaces for the achievement of bioelectrochemical enzymatic catalysis involving redox proteins and enzymes without further surface modification or the presence of mediators.}, language = {en} }