@article{WolfParrishMyhreetal.2019, author = {Wolf, Thomas J. A. and Parrish, Robert M. and Myhre, Rolf H. and Martinez, Todd J. and Koch, Henrik and G{\"u}hr, Markus}, title = {Observation of Ultrafast Intersystem Crossing in Thymine by Extreme Ultraviolet Time-Resolved Photoelectron Spectroscopy}, series = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, volume = {123}, journal = {The journal of physical chemistry : A, Molecules, spectroscopy, kinetics, environment \& general theory}, number = {32}, publisher = {American Chemical Society}, address = {Washington}, issn = {1089-5639}, doi = {10.1021/acs.jpca.9b05573}, pages = {6897 -- 6903}, year = {2019}, abstract = {We studied the photoinduced ultrafast relaxation dynamics of the nucleobase thymine using gas-phase time-resolved photoelectron spectroscopy. By employing extreme ultraviolet pulses from high harmonic generation for photoionization, we substantially extend our spectral observation window with respect to previous studies. This enables us to follow relaxation of the excited state population all the way to low-lying electronic states including the ground state. In thymine, we observe relaxation from the optically bright (1)pi pi* state of thymine to a dark (1)n pi* state within 80 +/- 30 fs. The (1)n pi* state relaxes further within 3.5 +/- 0.3 ps to a low-lying electronic state. By comparison with quantum chemical simulations, we can unambiguously assign its spectroscopic signature to the (3)pi pi* state. Hence, our study draws a comprehensive picture of the relaxation mechanism of thymine including ultrafast intersystem crossing to the triplet manifold.}, language = {en} }