@book{CarlaUhinkGundermannBraueretal.2021, author = {Carl{\`a}-Uhink, Filippo and Gundermann, Christine and Brauer, Juliane and Keilbach, Judith and Logge, Thorsten and Morat, Daniel and Peselmann, Arnika and Samida, Stefanie and Schwabe, Astrid and S{\´e}n{\´e}chau, Miriam and Koch, Georg}, title = {Schl{\"u}sselbegriffe der Public History}, publisher = {Vandenhoeck \& Ruprecht}, address = {G{\"o}ttingen}, isbn = {978-3-8252-5728-6}, pages = {316}, year = {2021}, abstract = {Der Band stellt Schl{\"u}sselbegriffe der Public History vor und erschließt diese {\"u}ber die wichtigsten Themenfelder und zentrale Forschungsperspektiven. Er richtet sich an Studierende, Lehrende und Praktiker:innen, die sich mit Geschichte in der {\"O}ffentlichkeit befassen und bietet Zug{\"a}nge zur theoretischen Fundierung der Public History als Teil der historischen Kulturwissenschaften an.}, language = {de} } @article{WetzelKochPreiseretal.2022, author = {Wetzel, Anna-Jasmin and Koch, Roland and Preiser, Christine and M{\"u}ller, Regina and Klemmt, Malte and Ranisch, Robert and Ehni, Hans-J{\"o}rg and Wiesing, Urban and Rieger, Monika A. and Henking, Tanja and Joos, Stefanie}, title = {Ethical, legal, and social implications of symptom checker Apps in primary Health Care (CHECK.APP)}, series = {JMIR Research Protocols}, volume = {11}, journal = {JMIR Research Protocols}, number = {5}, publisher = {JMIR Research Protocols}, address = {Toronto}, issn = {1929-0748}, doi = {10.2196/34026}, pages = {11}, year = {2022}, abstract = {Background: Symptom checker apps (SCAs) are accessible tools that provide early symptom assessment for users. The ethical, legal, and social implications of SCAs and their impact on the patient-physician relationship, the health care providers, and the health care system have sparsely been examined. This study protocol describes an approach to investigate the possible impacts and implications of SCAs on different levels of health care provision. It considers the perspectives of the users, nonusers, general practitioners (GPs), and health care experts. Objective: We aim to assess a comprehensive overview of the use of SCAs and address problematic issues, if any. The primary outcomes of this study are empirically informed multi-perspective recommendations for different stakeholders on the ethical, legal, and social implications of SCAs. Methods: Quantitative and qualitative methods will be used in several overlapping and interconnected study phases. In study phase 1, a comprehensive literature review will be conducted to assess the ethical, legal, social, and systemic impacts of SCAs. Study phase 2 comprises a survey that will be analyzed with a logistic regression. It aims to assess the user degree of SCAs in Germany as well as the predictors for SCA usage. Study phase 3 will investigate self-observational diaries and user interviews, which will be analyzed as integrated cases to assess user perspectives, usage pattern, and arising problems. Study phase 4 will comprise GP interviews to assess their experiences, perspectives, self-image, and concepts and will be analyzed with the basic procedure by Kruse. Moreover, interviews with health care experts will be conducted in study phase 3 and will be analyzed by using the reflexive thematical analysis approach of Braun and Clark. Results: Study phase 1 will be completed in November 2021. We expect the results of study phase 2 in December 2021 and February 2022. In study phase 3, interviews are currently being conducted. The final study endpoint will be in February 2023. Conclusions: The possible ethical, legal, social, and systemic impacts of a widespread use of SCAs that affect stakeholders and stakeholder groups on different levels of health care will be identified. The proposed methodological approach provides a multifaceted and diverse empirical basis for a broad discussion on these implications.}, language = {en} } @article{BrinkmannBeckerZimmermannetal.2022, author = {Brinkmann, Kai Oliver and Becker, Tim and Zimmermann, Florian and Kreusel, Cedric and Gahlmann, Tobias and Theisen, Manuel and Haeger, Tobias and Olthof, Selina and T{\"u}ckmantel, Christian and G{\"u}nster, M. and Maschwitz, Timo and G{\"o}belsmann, Fabian and Koch, Christine and Hertel, Dirk and Caprioglio, Pietro and Pe{\~n}a-Camargo, Francisco and Perdig{\´o}n-Toro, Lorena and Al-Ashouri, Amran and Merten, Lena and Hinderhofer, Alexander and Gomell, Leonie and Zhang, Siyuan and Schreiber, Frank and Albrecht, Steve and Meerholz, Klaus and Neher, Dieter and Stolterfoht, Martin and Riedl, Thomas}, title = {Perovskite-organic tandem solar cells with indium oxide interconnect}, series = {Nature}, volume = {604}, journal = {Nature}, number = {7905}, publisher = {Nature Research}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-022-04455-0}, pages = {280 -- 286}, year = {2022}, abstract = {Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures(1). Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported(2-5). Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells(6,7). Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (V-oc) of wide-gap perovskite cells(8) and losses introduced by the interconnect between the subcells(9,10). Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high V-oc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high V-oc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells(11), show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions(12) and are on a par with perovskite-CIGS and all-perovskite multijunctions(13).}, language = {en} }