@article{KliemSchwarzKurthsetal.1998, author = {Kliem, Bernhard and Schwarz, Udo and Kurths, J{\"u}rgen and Dennis, Brian and Schwartz, Richard and Aschwanden, Markus J.}, title = {Wavelet analysis of solar flare hard X-ray}, issn = {0004-637x}, year = {1998}, language = {en} } @article{ChengKliemDing2018, author = {Cheng, Xin and Kliem, Bernhard and Ding, Mingde}, title = {Unambiguous evidence of filament splitting-induced partial eruptions}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {856}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aab08d}, pages = {15}, year = {2018}, abstract = {Coronal mass ejections are often considered to result from the full eruption of a magnetic flux rope (MFR). However, it is recognized that, in some events, the MFR may release only part of its flux, with the details of the implied splitting not completely established due to limitations in observations. Here, we investigate two partial eruption events including a confined and a successful one. Both partial eruptions are a consequence of the vertical splitting of a filament-hosting MFR involving internal reconnection. A loss of equilibrium in the rising part of the magnetic flux is suggested by the impulsive onset of both events and by the delayed onset of reconnection in the confined event. The remaining part of the flux might be line-tied to the photosphere in a bald patch (BP) separatrix surface, and we confirm the existence of extended BP sections for the successful eruption. The internal reconnection is signified by brightenings in the body of one filament and between the rising and remaining parts of both filaments. It evolves quickly into the standard current sheet reconnection in the wake of the eruption. As a result, regardless of being confined or successful, both eruptions produce hard X-ray sources and flare loops below the erupting but above the surviving flux, as well as a pair of flare ribbons enclosing the latter.}, language = {en} } @article{LouisKliemRavindraetal.2015, author = {Louis, Rohan E. and Kliem, Bernhard and Ravindra, B. and Chintzoglou, Georgios}, title = {Triggering an Eruptive Flare by Emerging Flux in a Solar Active-Region Complex}, series = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, volume = {290}, journal = {Solar physics : a journal for solar and solar-stellar research and the study of solar terrestrial physics}, number = {12}, publisher = {Springer}, address = {Dordrecht}, issn = {0038-0938}, doi = {10.1007/s11207-015-0726-8}, pages = {3641 -- 3662}, year = {2015}, abstract = {A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on 2012 July 1 (SOL2012-07-01) in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.}, language = {en} } @article{SchumacherKliemSeehafer2000, author = {Schumacher, J{\"o}rg and Kliem, Bernhard and Seehafer, Norbert}, title = {Three-dimensional spontaneous magnetic reconnection in neutral current sheets}, year = {2000}, language = {en} } @book{SchumacherKliemSeehafer1999, author = {Schumacher, J{\"o}rg and Kliem, Bernhard and Seehafer, Norbert}, title = {Three-dimensional spontaneous magnetic reconnection in neutral current sheets}, series = {Preprint series / Astrophysikalisches Institut Potsdam}, volume = {99,42}, journal = {Preprint series / Astrophysikalisches Institut Potsdam}, publisher = {AIP}, address = {Potsdam}, pages = {26 S. : graph. Darst.}, year = {1999}, language = {en} } @article{ToeroekBergerKliem2010, author = {T{\"o}r{\"o}k, Tibor and Berger, Mitch A. and Kliem, Bernhard}, title = {The writhe of helical structures in the solar corona}, issn = {0004-6361}, doi = {10.1051/0004-6361/200913578}, year = {2010}, abstract = {Context. Helicity is a fundamental property of magnetic fields, conserved in ideal MHD. In flux rope geometry, it consists of twist and writhe helicity. Despite the common occurrence of helical structures in the solar atmosphere, little is known about how their shape relates to the writhe, which fraction of helicity is contained in writhe, and how much helicity is exchanged between twist and writhe when they erupt. Aims. Here we perform a quantitative investigation of these questions relevant for coronal flux ropes. Methods. The decomposition of the writhe of a curve into local and nonlocal components greatly facilitates its computation. We use it to study the relation between writhe and projected S shape of helical curves and to measure writhe and twist in numerical simulations of flux rope instabilities. The results are discussed with regard to filament eruptions and coronal mass ejections (CMEs). Results. (1) We demonstrate that the relation between writhe and projected S shape is not unique in principle, but that the ambiguity does not affect low- lying structures, thus supporting the established empirical rule which associates stable forward (reverse) S shaped structures low in the corona with positive (negative) helicity. (2) Kink-unstable erupting flux ropes are found to transform a far smaller fraction of their twist helicity into writhe helicity than often assumed. (3) Confined flux rope eruptions tend to show stronger writhe at low heights than ejective eruptions (CMEs). This argues against suggestions that the writhing facilitates the rise of the rope through the overlying field. (4) Erupting filaments which are S shaped already before the eruption and keep the sign of their axis writhe (which is expected if field of one chirality dominates the source volume of the eruption), must reverse their S shape in the course of the rise. Implications for the occurrence of the helical kink instability in such events are discussed. (5) The writhe of rising loops can easily be estimated from the angle of rotation about the direction of ascent, once the apex height exceeds the footpoint separation significantly. Conclusions. Writhe can straightforwardly be computed for numerical data and can often be estimated from observations. It is useful in interpreting S shaped coronal structures and in constraining models of eruptions.}, language = {en} } @article{DalmasseAulanierDemoulinetal.2015, author = {Dalmasse, Kevin and Aulanier, Guillaume and Demoulin, Pascal and Kliem, Bernhard and T{\"o}r{\"o}k, Tibor and Pariat, E.}, title = {The origin of net electric currents in solar active regions}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {810}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/810/1/17}, pages = {14}, year = {2015}, abstract = {There is a recurring question in solar physics regarding whether or not electric currents are neutralized in active regions (ARs). This question was recently revisited using three-dimensional (3D) magnetohydrodynamic (MHD) numerical simulations of magnetic flux emergence into the solar atmosphere. Such simulations showed that flux emergence can generate a substantial net current in ARs. Other sources of AR currents are photospheric horizontal flows. Our aim is to determine the conditions for the occurrence of net versus neutralized currents with this second mechanism. Using 3D MHD simulations, we systematically impose line-tied, quasi-static, photospheric twisting and shearing motions to a bipolar potential magnetic field. We find that such flows: (1) produce both direct and return currents, (2) induce very weak compression currents-not observed in 2.5D-in the ambient field present in the close vicinity of the current-carrying field, and (3) can generate force-free magnetic fields with a net current. We demonstrate that neutralized currents are in general produced only in the absence of magnetic shear at the photospheric polarity inversion line-a special condition that is rarely observed. We conclude that. photospheric flows,. as magnetic flux emergence, can build up net currents in the solar atmosphere, in agreement with recent observations. These results thus provide support for eruption models based on pre-eruption magnetic fields that possess a net coronal current.}, language = {en} } @article{ToeroekKliemBergeretal.2014, author = {Toeroek, T. and Kliem, Bernhard and Berger, M. A. and Linton, M. G. and Demoulin, Pascal and van Driel-Gesztelyi, L.}, title = {The evolution of writhe in kink-unstable flux ropes and erupting filaments}, series = {Plasma physics and controlled fusion}, volume = {56}, journal = {Plasma physics and controlled fusion}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0741-3335}, doi = {10.1088/0741-3335/56/6/064012}, pages = {7}, year = {2014}, abstract = {The helical kink instability of a twisted magnetic flux tube has been suggested as a trigger mechanism for solar filament eruptions and coronal mass ejections (CMEs). In order to investigate if estimations of the pre-emptive twist can be obtained from observations of writhe in such events, we quantitatively analyze the conversion of twist into writhe in the course of the instability, using numerical simulations. We consider the line tied, cylindrically symmetric Gold-Hoyle flux rope model and measure the writhe using the formulae by Berger and Prior which express the quantity as a single integral in space. We find that the amount of twist converted into writhe does not simply scale with the initial flux rope twist, but depends mainly on the growth rates of the instability eigenmodes of higher longitudinal order than the basic mode. The saturation levels of the writhe, as well as the shapes of the kinked flux ropes, are very similar for considerable ranges of initial flux rope twists, which essentially precludes estimations of pre-eruptive twist from measurements of writhe. However, our simulations suggest an upper twist limit of similar to 6 pi for the majority of filaments prior to their eruption.}, language = {en} } @article{GouLiuKliemetal.2019, author = {Gou, Tingyu and Liu, Rui and Kliem, Bernhard and Wang, Yuming and Veronig, Astrid M.}, title = {The birth of a coronal mass ejection}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {3}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aau7004}, pages = {9}, year = {2019}, abstract = {The Sun's atmosphere is frequently disrupted by coronal mass ejections (CMEs), coupled with flares and energetic particles. The coupling is usually attributed to magnetic reconnection at a vertical current sheet connecting the flare and CME, with the latter embedding a helical magnetic structure known as flux rope. However, both the origin of flux ropes and their nascent paths toward eruption remain elusive. Here, we present an observation of how a stellar-sized CME bubble evolves continuously from plasmoids, mini flux ropes that are barely resolved, within half an hour. The eruption initiates when plasmoids springing from a vertical current sheet merge into a leading plasmoid, which rises at increasing speeds and expands impulsively into the CME bubble, producing hard x-ray bursts simultaneously. This observation illuminates a complete CME evolutionary path capable of accommodating a wide variety of plasma phenomena by bridging the gap between microscale and macroscale dynamics.}, language = {en} } @article{ValoriKliemToeroeketal.2010, author = {Valori, Gherardo and Kliem, Bernhard and T{\"o}r{\"o}k, Tibor and Titov, Viacheslav S.}, title = {Testing magnetofrictional extrapolation with the Titov-Demoulin model of solar active regions}, issn = {0004-6361}, doi = {10.1051/0004-6361/201014416}, year = {2010}, abstract = {We examine the nonlinear magnetofrictional extrapolation scheme using the solar active region model by Titov and Demoulin as test field. This model consists of an arched, line-tied current channel held in force-free equilibrium by the potential field of a bipolar flux distribution in the bottom boundary. A modified version with a parabolic current density profile is employed here. We find that the equilibrium is reconstructed with very high accuracy in a representative range of parameter space, using only the vector field in the bottom boundary as input. Structural features formed in the interface between the flux rope and the surrounding arcade - "hyperbolic flux tube" and "bald patch separatrix surface" - are reliably reproduced, as are the flux rope twist and the energy and helicity of the configuration. This demonstrates that force-free fields containing these basic structural elements of solar active regions can be obtained by extrapolation. The influence of the chosen initial condition on the accuracy of reconstruction is also addressed, confirming that the initial field that best matches the external potential field of the model quite naturally leads to the best reconstruction. Extrapolating the magnetogram of a Titov-Demoulin equilibrium in the unstable range of parameter space yields a sequence of two opposing evolutionary phases, which clearly indicate the unstable nature of the configuration: a partial buildup of the flux rope with rising free energy is followed by destruction of the rope, losing most of the free energy.}, language = {en} }