@phdthesis{Kleinen2005, author = {Kleinen, Thomas Christopher}, title = {Stochastic information in the assessment of climate change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5382}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Stochastic information, to be understood as \"information gained by the application of stochastic methods\", is proposed as a tool in the assessment of changes in climate. This thesis aims at demonstrating that stochastic information can improve the consideration and reduction of uncertainty in the assessment of changes in climate. The thesis consists of three parts. In part one, an indicator is developed that allows the determination of the proximity to a critical threshold. In part two, the tolerable windows approach (TWA) is extended to a probabilistic TWA. In part three, an integrated assessment of changes in flooding probability due to climate change is conducted within the TWA. The thermohaline circulation (THC) is a circulation system in the North Atlantic, where the circulation may break down in a saddle-node bifurcation under the influence of climate change. Due to uncertainty in ocean models, it is currently very difficult to determine the distance of the THC to the bifurcation point. We propose a new indicator to determine the system's proximity to the bifurcation point by considering the THC as a stochastic system and using the information contained in the fluctuations of the circulation around the mean state. As the system is moved closer to the bifurcation point, the power spectrum of the overturning becomes \"redder\", i.e. more energy is contained in the low frequencies. Since the spectral changes are a generic property of the saddle-node bifurcation, the method is not limited to the THC, but it could also be applicable to other systems, e.g. transitions in ecosystems. In part two, a probabilistic extension to the tolerable windows approach (TWA) is developed. In the TWA, the aim is to determine the complete set of emission strategies that are compatible with so-called guardrails. Guardrails are limits to impacts of climate change or to climate change itself. Therefore, the TWA determines the \"maneuvering space\" humanity has, if certain impacts of climate change are to be avoided. Due to uncertainty it is not possible to definitely exclude the impacts of climate change considered, but there will always be a certain probability of violating a guardrail. Therefore the TWA is extended to a probabilistic TWA that is able to consider \"probabilistic uncertainty\", i.e. uncertainty that can be expressed as a probability distribution or uncertainty that arises through natural variability. As a first application, temperature guardrails are imposed, and the dependence of emission reduction strategies on probability distributions for climate sensitivities is investigated. The analysis suggests that it will be difficult to observe a temperature guardrail of 2\°C with high probabilities of actually meeting the target. In part three, an integrated assessment of changes in flooding probability due to climate change is conducted. A simple hydrological model is presented, as well as a downscaling scheme that allows the reconstruction of the spatio-temporal natural variability of temperature and precipitation. These are used to determine a probabilistic climate impact response function (CIRF), a function that allows the assessment of changes in probability of certain flood events under conditions of a changed climate. The assessment of changes in flooding probability is conducted in 83 major river basins. Not all floods can be considered: Events that either happen very fast, or affect only a very small area can not be considered, but large-scale flooding due to strong longer-lasting precipitation events can be considered. Finally, the probabilistic CIRFs obtained are used to determine emission corridors, where the guardrail is a limit to the fraction of world population that is affected by a predefined shift in probability of the 50-year flood event. This latter analysis has two main results. The uncertainty about regional changes in climate is still very high, and even small amounts of further climate change may lead to large changes in flooding probability in some river systems.}, subject = {Anthropogene Klima{\"a}nderung}, language = {en} } @article{TreatKleinenBroothaertsetal.2019, author = {Treat, Claire C. and Kleinen, Thomas and Broothaerts, Nils and Dalton, April S. and Dommain, Rene and Douglas, Thomas A. and Drexler, Judith Z. and Finkelstein, Sarah A. and Grosse, Guido and Hope, Geoffrey and Hutchings, Jack and Jones, Miriam C. and Kuhry, Peter and Lacourse, Terri and Lahteenoja, Outi and Loisel, Julie and Notebaert, Bastiaan and Payne, Richard J. and Peteet, Dorothy M. and Sannel, A. Britta K. and Stelling, Jonathan M. and Strauss, Jens and Swindles, Graeme T. and Talbot, Julie and Tarnocai, Charles and Verstraeten, Gert and Williams, Christopher J. and Xia, Zhengyu and Yu, Zicheng and Valiranta, Minna and Hattestrand, Martina and Alexanderson, Helena and Brovkin, Victor}, title = {Widespread global peatland establishment and persistence over the last 130,000 y}, series = {Proceedings of the National Academy of Sciences of the United States of America}, volume = {116}, journal = {Proceedings of the National Academy of Sciences of the United States of America}, number = {11}, publisher = {National Acad. of Sciences}, address = {Washington}, issn = {0027-8424}, doi = {10.1073/pnas.1813305116}, pages = {4822 -- 4827}, year = {2019}, abstract = {Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (> 40 degrees N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90\% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.}, language = {en} }