@article{WichmannJeltschDeanetal.2002, author = {Wichmann, Matthias and Jeltsch, Florian and Dean, Richard and Moloney, Kirk A. and Wissel, Christian}, title = {Does climate change in arid savanna affect the population persistence of raptors?}, year = {2002}, language = {en} } @article{WichmannJeltschDeanetal.2002, author = {Wichmann, Matthias and Jeltsch, Florian and Dean, Richard and Moloney, Kirk A. and Wissel, Christian}, title = {Weather does matter : simulating population dynamics of tawny eagle (Aquila rapax) under various rainfall scenarios}, year = {2002}, language = {en} } @misc{SieckIbischMoloneyetal.2017, author = {Sieck, Mungla and Ibisch, Pierre L. and Moloney, Kirk A. and Jeltsch, Florian}, title = {Current models broadly neglect specific needs of biodiversity conservation in protected areas under climate change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400894}, pages = {12}, year = {2017}, abstract = {Background Protected areas are the most common and important instrument for the conservation of biological diversity and are called for under the United Nations' Convention on Biological Diversity. Growing human population densities, intensified land-use, invasive species and increasing habitat fragmentation threaten ecosystems worldwide and protected areas are often the only refuge for endangered species. Climate change is posing an additional threat that may also impact ecosystems currently under protection. Therefore, it is of crucial importance to include the potential impact of climate change when designing future nature conservation strategies and implementing protected area management. This approach would go beyond reactive crisis management and, by necessity, would include anticipatory risk assessments. One avenue for doing so is being provided by simulation models that take advantage of the increase in computing capacity and performance that has occurred over the last two decades. Here we review the literature to determine the state-of-the-art in modeling terrestrial protected areas under climate change, with the aim of evaluating and detecting trends and gaps in the current approaches being employed, as well as to provide a useful overview and guidelines for future research. Results Most studies apply statistical, bioclimatic envelope models and focus primarily on plant species as compared to other taxa. Very few studies utilize a mechanistic, process-based approach and none examine biotic interactions like predation and competition. Important factors like land-use, habitat fragmentation, invasion and dispersal are rarely incorporated, restricting the informative value of the resulting predictions considerably. Conclusion The general impression that emerges is that biodiversity conservation in protected areas could benefit from the application of modern modeling approaches to a greater extent than is currently reflected in the scientific literature. It is particularly true that existing models have been underutilized in testing different management options under climate change. Based on these findings we suggest a strategic framework for more effectively incorporating the impact of climate change in models exploring the effectiveness of protected areas.}, language = {en} } @article{SchiffersSchurrTielboergeretal.2008, author = {Schiffers, Katja and Schurr, Frank Martin and Tielb{\"o}rger, Katja and Urbach, Carsten and Moloney, Kirk A. and Jeltsch, Florian}, title = {Dealing with virtual aggregation : a new index for analysing heterogeneous point patterns}, issn = {0906-7590}, doi = {10.1111/j.0906-7590.2008.05374.x}, year = {2008}, language = {en} } @article{MoloneyJeltsch2008, author = {Moloney, Kirk A. and Jeltsch, Florian}, title = {Space matters : novel developments in plant ecology through spatial modelling}, issn = {1433-8319}, doi = {10.1016/j.ppees.2007.12.002}, year = {2008}, language = {en} } @article{MoloneyHolzapfelTielboergeretal.2009, author = {Moloney, Kirk A. and Holzapfel, Claus and Tielb{\"o}rger, Katja and Jeltsch, Florian and Schurr, Frank Martin}, title = {Rethinking the common garden in invasion research}, issn = {1433-8319}, doi = {10.1016/j.ppees.2009.05.002}, year = {2009}, abstract = {In common garden experiments, a number of genotypes are raised in a common environment in order to quantify the genetic component of phenotypic variation. Common gardens are thus ideally suited for disentangling how genetic and environmental factors contribute to the success of invasive species in their new non-native range. Although common garden experiments are increasingly employed in the study of invasive species, there has been little discussion about how these experiments should be designed for greatest utility. We argue that this has delayed progress in developing a general theory of invasion biology. We suggest a minimum optimal design (MOD) for common garden studies that target the ecological and evolutionary processes leading to phenotypic differentiation between native and invasive ranges. This involves four elements: (A) multiple, strategically sited garden locations, involving at the very least four gardens (2 in the native range and 2 in the invaded range); (B) careful consideration of the genetic design of the experiment; (C) standardization of experimental protocols across all gardens; and (D) care to ensure the biosafety of the experiment. Our understanding of the evolutionary ecology of biological invasions will be greatly enhanced by common garden studies, if and only if they are designed in a more systematic fashion, incorporating at the very least the MOD suggested here.}, language = {en} } @article{JeltschWichmannJohstetal.2003, author = {Jeltsch, Florian and Wichmann, Matthias and Johst, J. and Moloney, Kirk A. and Wissel, Christian}, title = {Extinction risk in periodically fluctuating environments}, year = {2003}, language = {en} } @article{JeltschWichmannDeanetal.2003, author = {Jeltsch, Florian and Wichmann, Matthias and Dean, W. R. J. and Moloney, Kirk A. and Wissel, Christian}, title = {Implications of climate change for the persistence of raptors in arid savannah}, year = {2003}, language = {en} } @article{JeltschWeberDeanetal.2000, author = {Jeltsch, Florian and Weber, Gisela and Dean, W. R. J. and Milton, Sue J. and VanRooyen, N. and O'Connor, Terry and Moloney, Kirk A.}, title = {Entstehung und Bedeutung r{\"a}umlicher Vegetationsstrukturen in Trockensavannen : Baum-Graskoexistenz und Artenvielfalt}, year = {2000}, language = {de} } @article{JeltschWeberMoloney2000, author = {Jeltsch, Florian and Weber, G. E. and Moloney, Kirk A.}, title = {Simulated long-term vegetation response to alternative stocking strategies in savanna rangelands}, year = {2000}, language = {en} }