@article{YangZhuWolfetal.2018, author = {Yang, Jie and Zhu, Xiaolei and Wolf, Thomas J. A. and Li, Zheng and Nunes, Jo{\~a}o Pedro Figueira and Coffee, Ryan and Cryan, James P. and G{\"u}hr, Markus and Hegazy, Kareem and Heinz, Tony F. and Jobe, Keith and Li, Renkai and Shen, Xiaozhe and Veccione, Theodore and Weathersby, Stephen and Wilkin, Kyle J. and Yoneda, Charles and Zheng, Qiang and Martinez, Todd J. and Centurion, Martin and Wang, Xijie}, title = {Imaging CF3I conical intersection and photodissociation dynamics with ultrafast electron diffraction}, series = {Science}, volume = {361}, journal = {Science}, number = {6397}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aat0049}, pages = {64 -- 67}, year = {2018}, abstract = {Conical intersections play a critical role in excited-state dynamics of polyatomic molecules because they govern the reaction pathways of many nonadiabatic processes. However, ultrafast probes have lacked sufficient spatial resolution to image wave-packet trajectories through these intersections directly. Here, we present the simultaneous experimental characterization of one-photon and two-photon excitation channels in isolated CF3I molecules using ultrafast gas-phase electron diffraction. In the two-photon channel, we have mapped out the real-space trajectories of a coherent nuclear wave packet, which bifurcates onto two potential energy surfaces when passing through a conical intersection. In the one-photon channel, we have resolved excitation of both the umbrella and the breathing vibrational modes in the CF3 fragment in multiple nuclear dimensions. These findings benchmark and validate ab initio nonadiabatic dynamics calculations.}, language = {en} } @article{YangGuehrVecchioneetal.2016, author = {Yang, Jie and G{\"u}hr, Markus and Vecchione, Theodore and Robinson, Matthew Scott and Li, Renkai and Hartmann, Nick and Shen, Xiaozhe and Coffee, Ryan and Corbett, Jeff and Fry, Alan and Gaffney, Kelly and Gorkhover, Tais and Hast, Carsten and Jobe, Keith and Makasyuk, Igor and Reid, Alexander and Robinson, Joseph and Vetter, Sharon and Wang, Fenglin and Weathersby, Stephen and Yoneda, Charles and Centurion, Martin and Wang, Xijie}, title = {Diffractive imaging of a rotational wavepacket in nitrogen molecules with femtosecond megaelectronvolt electron pulses}, series = {Nature Communications}, volume = {7}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms11232}, pages = {9}, year = {2016}, abstract = {Imaging changes in molecular geometries on their natural femtosecond timescale with sub-Angstrom spatial precision is one of the critical challenges in the chemical sciences, as the nuclear geometry changes determine the molecular reactivity. For photoexcited molecules, the nuclear dynamics determine the photoenergy conversion path and efficiency. Here we report a gas-phase electron diffraction experiment using megaelectronvolt (MeV) electrons, where we captured the rotational wavepacket dynamics of nonadiabatically laser-aligned nitrogen molecules. We achieved a combination of 100 fs root-mean-squared temporal resolution and sub-Angstrom (0.76 angstrom) spatial resolution that makes it possible to resolve the position of the nuclei within the molecule. In addition, the diffraction patterns reveal the angular distribution of the molecules, which changes from prolate (aligned) to oblate (anti-aligned) in 300 fs. Our results demonstrate a significant and promising step towards making atomically resolved movies of molecular reactions.}, language = {en} } @misc{YangGuehrVecchioneetal.2016, author = {Yang, Jie and Guehr, Markus and Vecchione, Theodore and Robinson, Matthew Scott and Li, Renkai and Hartmann, Nick and Shen, Xiaozhe and Coffee, Ryan and Corbett, Jeff and Fry, Alan and Gaffney, Kelly and Gorkhover, Tais and Hast, Carsten and Jobe, Keith and Makasyuk, Igor and Reid, Alexander and Robinson, Joseph and Vetter, Sharon and Wang, Fenglin and Weathersby, Stephen and Yoneda, Charles and Wang, Xijie and Centurion, Martin}, title = {Femtosecond gas phase electron diffraction with MeV electrons}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394989}, pages = {19}, year = {2016}, abstract = {We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.}, language = {en} } @article{YangGuehrVecchioneetal.2016, author = {Yang, Jie and G{\"u}hr, Markus and Vecchione, Theodore and Robinson, Matthew Scott and Li, Renkai and Hartmann, Nick and Shen, Xiaozhe and Coffee, Ryan and Corbett, Jeff and Fry, Alan and Gaffney, Kelly and Gorkhover, Tais and Hast, Carsten and Jobe, Keith and Makasyuk, Igor and Reid, Alexander and Robinson, Joseph and Vetter, Sharon and Wang, Fenglin and Weathersby, Stephen and Yoneda, Charles and Wang, Xijie and Centurion, Martin}, title = {Femtosecond gas phase electron diffraction with MeV electrons}, series = {Faraday discussions}, volume = {194}, journal = {Faraday discussions}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1359-6640}, doi = {10.1039/c6fd00071a}, pages = {563 -- 581}, year = {2016}, abstract = {We present results on ultrafast gas electron diffraction (UGED) experiments with femtosecond resolution using the MeV electron gun at SLAC National Accelerator Laboratory. UGED is a promising method to investigate molecular dynamics in the gas phase because electron pulses can probe the structure with a high spatial resolution. Until recently, however, it was not possible for UGED to reach the relevant timescale for the motion of the nuclei during a molecular reaction. Using MeV electron pulses has allowed us to overcome the main challenges in reaching femtosecond resolution, namely delivering short electron pulses on a gas target, overcoming the effect of velocity mismatch between pump laser pulses and the probe electron pulses, and maintaining a low timing jitter. At electron kinetic energies above 3 MeV, the velocity mismatch between laser and electron pulses becomes negligible. The relativistic electrons are also less susceptible to temporal broadening due to the Coulomb force. One of the challenges of diffraction with relativistic electrons is that the small de Broglie wavelength results in very small diffraction angles. In this paper we describe the new setup and its characterization, including capturing static diffraction patterns of molecules in the gas phase, finding time-zero with sub-picosecond accuracy and first time-resolved diffraction experiments. The new device can achieve a temporal resolution of 100 fs root-mean-square, and sub-angstrom spatial resolution. The collimation of the beam is sufficient to measure the diffraction pattern, and the transverse coherence is on the order of 2 nm. Currently, the temporal resolution is limited both by the pulse duration of the electron pulse on target and by the timing jitter, while the spatial resolution is limited by the average electron beam current and the signal-to-noise ratio of the detection system. We also discuss plans for improving both the temporal resolution and the spatial resolution.}, language = {en} } @article{YangGuehrShenetal.2016, author = {Yang, Jie and Guehr, Markus and Shen, Xiaozhe and Li, Renkai and Vecchione, Theodore and Coffee, Ryan and Corbett, Jeff and Fry, Alan and Hartmann, Nick and Hast, Carsten and Hegazy, Kareem and Jobe, Keith and Makasyuk, Igor and Robinson, Joseph and Robinson, Matthew Scott and Vetter, Sharon and Weathersby, Stephen and Yoneda, Charles and Wang, Xijie and Centurion, Martin}, title = {Diffractive Imaging of Coherent Nuclear Motion in Isolated Molecules}, series = {Physical review letters}, volume = {117}, journal = {Physical review letters}, publisher = {American Physical Society}, address = {College Park}, issn = {0031-9007}, doi = {10.1103/PhysRevLett.117.153002}, pages = {6}, year = {2016}, abstract = {Observing the motion of the nuclear wave packets during a molecular reaction, in both space and time, is crucial for understanding and controlling the outcome of photoinduced chemical reactions. We have imaged the motion of a vibrational wave packet in isolated iodine molecules using ultrafast electron diffraction with relativistic electrons. The time-varying interatomic distance was measured with a precision 0.07 angstrom and temporal resolution of 230 fs full width at half maximum. The method is not only sensitive to the position but also the shape of the nuclear wave packet.}, language = {en} }