@phdthesis{Karakas2024, author = {Karakas, Esra}, title = {High-resolution studies of epistasis in tomato metabolism}, school = {Universit{\"a}t Potsdam}, pages = {137}, year = {2024}, abstract = {The inclusion of exotic germplasm serves as a crucial means to enhance allelic and consequently phenotypic diversity in inbred crop species. Such species have experienced a reduction in diversity due to artificial selection focused on a limited set of traits. The natural biodiversity within ecosystems presents an opportunity to explore various traits influencing plant survival, reproductive fitness and yield potential. In agricultural research, the study of wild species closely related to cultivated plants serves as a means to comprehend the genetic foundations of past domestication events and the polymorphisms essential for future breeding efforts to develop superior varieties. In order to examine the metabolic composition, pinpoint quantitative trait loci (QTL) and facilitate their resolution an extensive large-scale analysis of metabolic QTL (mQTL) was conducted on tomato backcross inbred lines (BILs) derived from a cross between the wild species S. pennellii (5240) incorporated into the background of S. lycopersicum cv. LEA determinate inbred which can be grown in open fields and cv. TOP indeterminate which can be grown in greenhouse conditions. A large number of mQTL associated with primary secondary and lipid metabolism in fruit were identified across the two BIL populations. Epistasis, the interactions between genes at different loci, has been an interest in molecular and quantitative genetics for many decades. The study of epistasis requires the analysis of very large populations with multiple independent genotypes that carry specific genomic regions. In order to understand the genetic basis of tomato fruit metabolism, I extended the work to investigate epistatic interactions of the genomic regions. In addition, two candidate genes were identified through quantitative trait loci underlying fruit-specific sucrose and jasmonic acid derivatives. Finally, in this study, I assessed the genetic framework of fruit metabolic traits with a high level of detail, utilizing the newly created Solanum pennellii (5240) backcrossed introgression lines (n=3000). This investigation resulted in the discovery of promising candidate loci associated with significant fruit quality traits, including those to the abundance of glutamic acid and aspartic acid crucial elements contributing to the development of acidity and flavors.}, language = {en} }