@article{ZielhoferSchmidtReicheetal.2022, author = {Zielhofer, Christoph and Schmidt, Johannes and Reiche, Niklas and Tautenhahn, Marie and Ballasus, Helen and Burkart, Michael and Linst{\"a}dter, Anja and Dietze, Elisabeth and Kaiser, Knut and Mehler, Natascha}, title = {The lower Havel River Region (Brandenburg, Germany)}, series = {Water}, volume = {14}, journal = {Water}, number = {3}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w14030480}, pages = {23}, year = {2022}, abstract = {Instrumental data show that the groundwater and lake levels in Northeast Germany have decreased over the past decades, and this process has accelerated over the past few years. In addition to global warming, the direct influence of humans on the local water balance is suspected to be the cause. Since the instrumental data usually go back only a few decades, little is known about the multidecadal to centennial-scale trend, which also takes long-term climate variation and the long-term influence by humans on the water balance into account. This study aims to quantitatively reconstruct the surface water areas in the Lower Havel Inner Delta and of adjacent Lake Gulpe in Brandenburg. The analysis includes the calculation of surface water areas from historical and modern maps from 1797 to 2020. The major finding is that surface water areas have decreased by approximately 30\% since the pre-industrial period, with the decline being continuous. Our data show that the comprehensive measures in Lower Havel hydro-engineering correspond with groundwater lowering that started before recent global warming. Further, large-scale melioration measures with increasing water demands in the upstream wetlands beginning from the 1960s to the 1980s may have amplified the decline in downstream surface water areas.}, language = {en} } @article{ChipmanFerrierBrenaetal.2014, author = {Chipman, Ariel D. and Ferrier, David E. K. and Brena, Carlo and Qu, Jiaxin and Hughes, Daniel S. T. and Schroeder, Reinhard and Torres-Oliva, Montserrat and Znassi, Nadia and Jiang, Huaiyang and Almeida, Francisca C. and Alonso, Claudio R. and Apostolou, Zivkos and Aqrawi, Peshtewani and Arthur, Wallace and Barna, Jennifer C. J. and Blankenburg, Kerstin P. and Brites, Daniela and Capella-Gutierrez, Salvador and Coyle, Marcus and Dearden, Peter K. and Du Pasquier, Louis and Duncan, Elizabeth J. and Ebert, Dieter and Eibner, Cornelius and Erikson, Galina and Evans, Peter D. and Extavour, Cassandra G. and Francisco, Liezl and Gabaldon, Toni and Gillis, William J. and Goodwin-Horn, Elizabeth A. and Green, Jack E. and Griffiths-Jones, Sam and Grimmelikhuijzen, Cornelis J. P. and Gubbala, Sai and Guigo, Roderic and Han, Yi and Hauser, Frank and Havlak, Paul and Hayden, Luke and Helbing, Sophie and Holder, Michael and Hui, Jerome H. L. and Hunn, Julia P. and Hunnekuhl, Vera S. and Jackson, LaRonda and Javaid, Mehwish and Jhangiani, Shalini N. and Jiggins, Francis M. and Jones, Tamsin E. and Kaiser, Tobias S. and Kalra, Divya and Kenny, Nathan J. and Korchina, Viktoriya and Kovar, Christie L. and Kraus, F. Bernhard and Lapraz, Francois and Lee, Sandra L. and Lv, Jie and Mandapat, Christigale and Manning, Gerard and Mariotti, Marco and Mata, Robert and Mathew, Tittu and Neumann, Tobias and Newsham, Irene and Ngo, Dinh N. and Ninova, Maria and Okwuonu, Geoffrey and Ongeri, Fiona and Palmer, William J. and Patil, Shobha and Patraquim, Pedro and Pham, Christopher and Pu, Ling-Ling and Putman, Nicholas H. and Rabouille, Catherine and Ramos, Olivia Mendivil and Rhodes, Adelaide C. and Robertson, Helen E. and Robertson, Hugh M. and Ronshaugen, Matthew and Rozas, Julio and Saada, Nehad and Sanchez-Gracia, Alejandro and Scherer, Steven E. and Schurko, Andrew M. and Siggens, Kenneth W. and Simmons, DeNard and Stief, Anna and Stolle, Eckart and Telford, Maximilian J. and Tessmar-Raible, Kristin and Thornton, Rebecca and van der Zee, Maurijn and von Haeseler, Arndt and Williams, James M. and Willis, Judith H. and Wu, Yuanqing and Zou, Xiaoyan and Lawson, Daniel and Muzny, Donna M. and Worley, Kim C. and Gibbs, Richard A. and Akam, Michael and Richards, Stephen}, title = {The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima}, series = {PLoS biology}, volume = {12}, journal = {PLoS biology}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1545-7885}, doi = {10.1371/journal.pbio.1002005}, pages = {24}, year = {2014}, abstract = {Myriapods (e. g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.}, language = {en} } @article{SimonsLewinsohnBluethgenetal.2017, author = {Simons, Nadja K. and Lewinsohn, Thomas and Bluethgen, Nico and Buscot, Francois and Boch, Steffen and Daniel, Rolf and Gossner, Martin M. and Jung, Kirsten and Kaiser, Kristin and M{\"u}ller, J{\"o}rg and Prati, Daniel and Renner, Swen C. and Socher, Stephanie A. and Sonnemann, Ilja and Weiner, Christiane N. and Werner, Michael and Wubet, Tesfaye and Wurst, Susanne and Weisser, Wolfgang W.}, title = {Contrasting effects of grassland management modes on species-abundance distributions of multiple groups}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {237}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.12.022}, pages = {143 -- 153}, year = {2017}, abstract = {Intensive land use is a major cause of biodiversity loss, but most studies comparing the response of multiple taxa rely on simple diversity measures while analyses of other community attributes are only recently gaining attention. Species-abundance distributions (SADs) are a community attribute that can be used to study changes in the overall abundance structure of species groups, and whether these changes are driven by abundant or rare species. We evaluated the effect of grassland management intensity for three land-use modes (fertilization, mowing, grazing) and their combination on species richness and SADs for three belowground (arbuscular mycorrhizal fungi, prokaryotes and insect larvae) and seven aboveground groups (vascular plants, bryophytes and lichens; arthropod herbivores; arthropod pollinators; bats and birds). Three descriptors of SADs were evaluated: general shape (abundance decay rate), proportion of rare species (rarity) and proportional abundance of the commonest species (dominance). Across groups, taxonomic richness was largely unaffected by land-use intensity and only decreased with increasing mowing intensity. Of the three SAD descriptors, abundance decay rate became steeper with increasing combined land-use intensity across groups. This reflected a decrease in rarity among plants, herbivores and vertebrates. Effects of fertilization on the three descriptors were similar to the combined land-use intensity effects. Mowing intensity only affected the SAD descriptors of insect larvae and vertebrates, while grazing intensity produced a range of effects on different descriptors in distinct groups. Overall, belowground groups had more even abundance distribtitions than aboveground groups. Strong differences among aboveground groups and between above- and belowground groups indicate that no single taxonomic group can serve as an indicator for effects in other groups. In the past, the use of SADs has been hampered by concerns over theoretical models underlying specific forms of SADs. Our study shows that SAD descriptors that are not connected to a particular model are suitable to assess the effect of land use on community structure.}, language = {en} } @article{KaylerKaiserGessleretal.2011, author = {Kayler, Z. E. and Kaiser, Michael and Gessler, A. and Ellerbrock, Ruth H. and Sommer, Michael}, title = {Application of delta C-13 and delta N-15 isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms}, series = {Biogeosciences}, volume = {8}, journal = {Biogeosciences}, number = {10}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-8-2895-2011}, pages = {2895 -- 2906}, year = {2011}, abstract = {Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of delta C-13 and delta N-15 isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the delta C-13 and delta N-15 isotopic signatures from two organic matter (OM) fractions along with soil mineral proxies to identify the likely binding mechanisms involved. We analyzed OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1) OM separated chemically with sodium pyrophosphate (OM(PY)) and (2) OM occluded in micro-structures found in the chemical extraction residue (OM(ER)). Because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established mineral and chemical proxies indicative for certain binding mechanisms. We found different mechanisms predominate in each land use type. For arable soils, the formation of OM(PY)-Ca-mineral associations was identified as an important OM binding mechanism. Therefore, we hypothesize an increased stabilization of microbial processed OM(PY) through Ca2+ interactions. In general, we found the forest soils to contain on average 10\% more stabilized carbon relative to total carbon stocks, than the agricultural counter part. In forest soils, we found a positive relationship between isotopic signatures of OM(PY) and the ratio of soil organic carbon content to soil surface area (SOC/SSA). This indicates that the OM(PY) fractions of forest soils represent layers of slower exchange not directly attached to mineral surfaces. From the isotopic composition of the OM(ER) fraction, we conclude that the OM in this fraction from both land use types have undergone a different pathway to stabilization that does not involve microbial processing, which may include OM which is highly protected within soil micro-structures.}, language = {en} }