@article{KaiserEllerbrockSommer2009, author = {Kaiser, Michael and Ellerbrock, Ruth H. and Sommer, Michael}, title = {Separation of coarse organic particles from bulk surface soil samples by electrostatic attraction}, issn = {0361-5995}, doi = {10.2136/sssaj2009.0046}, year = {2009}, abstract = {Different separation procedures are suggested for studying the stability and functionality of sod organic matter (OM). Density fractionation procedures using high-molarity, water-based salt solutions to separate organic particles may cause losses or transfers of C between particle and soluble OM fractions during separation, which may be a result of solution processes. The objective of this study was to separate coarse organic particles (>0.315 mm) from air- dried surface soil samples to avoid such solution processes as far as possible. Air-dried surface soil samples (<2 mm) from nine adjacent arable and forest sites were sieved into five soil particle size fractions (2-1.25, 1.25-0.8, 0.8- 0.5, 0.5-0.4, and 0.4-0.315 mm). Coarse organic particles were separated from each of these fractions using electrostatic attraction by a charged glass surface. The sum of the total dry matter content of the electrostatically separated coarse organic particles ranged from 0.05 to 140 g kg(-1). Scanning electron microscopy images and organic C (OC) analyses indicated, however, that the coarse organic particle fractions were also composed of 20 to 76\% mineral particles (i.e., 200-760 g mineral kg(-1) fraction). The repeatability of the electrostatic attraction procedure falls within a range similar to that of accepted density fractionation methods using high-molarity salt solutions. Based on the similarity in repeatability, we suggest that the electrostatic attraction procedure will successfully remove coarse organic particles (>0.315 mm) from air-dried surface soil samples. Because aqueous solutions are not used, the electrostatic attraction procedure to separate coarse organic particles avoids C losses and transfers associated with solution-dependent techniques. Therefore, this method can be used as a pretreatment for subsequent density- or solubility-based soil OM fractionation procedures.}, language = {en} } @article{ChipmanFerrierBrenaetal.2014, author = {Chipman, Ariel D. and Ferrier, David E. K. and Brena, Carlo and Qu, Jiaxin and Hughes, Daniel S. T. and Schroeder, Reinhard and Torres-Oliva, Montserrat and Znassi, Nadia and Jiang, Huaiyang and Almeida, Francisca C. and Alonso, Claudio R. and Apostolou, Zivkos and Aqrawi, Peshtewani and Arthur, Wallace and Barna, Jennifer C. J. and Blankenburg, Kerstin P. and Brites, Daniela and Capella-Gutierrez, Salvador and Coyle, Marcus and Dearden, Peter K. and Du Pasquier, Louis and Duncan, Elizabeth J. and Ebert, Dieter and Eibner, Cornelius and Erikson, Galina and Evans, Peter D. and Extavour, Cassandra G. and Francisco, Liezl and Gabaldon, Toni and Gillis, William J. and Goodwin-Horn, Elizabeth A. and Green, Jack E. and Griffiths-Jones, Sam and Grimmelikhuijzen, Cornelis J. P. and Gubbala, Sai and Guigo, Roderic and Han, Yi and Hauser, Frank and Havlak, Paul and Hayden, Luke and Helbing, Sophie and Holder, Michael and Hui, Jerome H. L. and Hunn, Julia P. and Hunnekuhl, Vera S. and Jackson, LaRonda and Javaid, Mehwish and Jhangiani, Shalini N. and Jiggins, Francis M. and Jones, Tamsin E. and Kaiser, Tobias S. and Kalra, Divya and Kenny, Nathan J. and Korchina, Viktoriya and Kovar, Christie L. and Kraus, F. Bernhard and Lapraz, Francois and Lee, Sandra L. and Lv, Jie and Mandapat, Christigale and Manning, Gerard and Mariotti, Marco and Mata, Robert and Mathew, Tittu and Neumann, Tobias and Newsham, Irene and Ngo, Dinh N. and Ninova, Maria and Okwuonu, Geoffrey and Ongeri, Fiona and Palmer, William J. and Patil, Shobha and Patraquim, Pedro and Pham, Christopher and Pu, Ling-Ling and Putman, Nicholas H. and Rabouille, Catherine and Ramos, Olivia Mendivil and Rhodes, Adelaide C. and Robertson, Helen E. and Robertson, Hugh M. and Ronshaugen, Matthew and Rozas, Julio and Saada, Nehad and Sanchez-Gracia, Alejandro and Scherer, Steven E. and Schurko, Andrew M. and Siggens, Kenneth W. and Simmons, DeNard and Stief, Anna and Stolle, Eckart and Telford, Maximilian J. and Tessmar-Raible, Kristin and Thornton, Rebecca and van der Zee, Maurijn and von Haeseler, Arndt and Williams, James M. and Willis, Judith H. and Wu, Yuanqing and Zou, Xiaoyan and Lawson, Daniel and Muzny, Donna M. and Worley, Kim C. and Gibbs, Richard A. and Akam, Michael and Richards, Stephen}, title = {The first myriapod genome sequence reveals conservative arthropod gene content and genome organisation in the centipede Strigamia maritima}, series = {PLoS biology}, volume = {12}, journal = {PLoS biology}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1545-7885}, doi = {10.1371/journal.pbio.1002005}, pages = {24}, year = {2014}, abstract = {Myriapods (e. g., centipedes and millipedes) display a simple homonomous body plan relative to other arthropods. All members of the class are terrestrial, but they attained terrestriality independently of insects. Myriapoda is the only arthropod class not represented by a sequenced genome. We present an analysis of the genome of the centipede Strigamia maritima. It retains a compact genome that has undergone less gene loss and shuffling than previously sequenced arthropods, and many orthologues of genes conserved from the bilaterian ancestor that have been lost in insects. Our analysis locates many genes in conserved macro-synteny contexts, and many small-scale examples of gene clustering. We describe several examples where S. maritima shows different solutions from insects to similar problems. The insect olfactory receptor gene family is absent from S. maritima, and olfaction in air is likely effected by expansion of other receptor gene families. For some genes S. maritima has evolved paralogues to generate coding sequence diversity, where insects use alternate splicing. This is most striking for the Dscam gene, which in Drosophila generates more than 100,000 alternate splice forms, but in S. maritima is encoded by over 100 paralogues. We see an intriguing linkage between the absence of any known photosensory proteins in a blind organism and the additional absence of canonical circadian clock genes. The phylogenetic position of myriapods allows us to identify where in arthropod phylogeny several particular molecular mechanisms and traits emerged. For example, we conclude that juvenile hormone signalling evolved with the emergence of the exoskeleton in the arthropods and that RR-1 containing cuticle proteins evolved in the lineage leading to Mandibulata. We also identify when various gene expansions and losses occurred. The genome of S. maritima offers us a unique glimpse into the ancestral arthropod genome, while also displaying many adaptations to its specific life history.}, language = {en} } @article{KaiserBerheSommeretal.2012, author = {Kaiser, Michael and Berhe, Asmeret Asefaw and Sommer, Michael and Kleber, Markus}, title = {Application of ultrasound to disperse soil aggregates of high mechanical stability}, series = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, volume = {175}, journal = {Journal of plant nutrition and soil science = Zeitschrift f{\"u}r Pflanzenern{\"a}hrung und Bodenkunde}, number = {4}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1436-8730}, doi = {10.1002/jpln.201200077}, pages = {521 -- 526}, year = {2012}, abstract = {Questions remain about the exact ultrasonic energy level that is required to effectively disperse soil aggregates and to what extent this is accompanied by physical damage to individual soil particles. We found maximum aggregate dispersion at energy levels of 1500 J?cm3 and no evidence for the disintegration of particles < 20 mu m even at that energy level. Our findings suggest that sonication at energies much greater than those applied conventionally can disperse aggregates of high mechanical stability.}, language = {en} } @article{KaiserWalterEllerbrocketal.2011, author = {Kaiser, Michael and Walter, K. and Ellerbrock, Ruth H. and Sommer, Michael}, title = {Effects of land use and mineral characteristics on the organic carbon content, and the amount and composition of Na-pyrophosphate-soluble organic matter, in subsurface soils}, series = {European journal of soil science}, volume = {62}, journal = {European journal of soil science}, number = {2}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1351-0754}, doi = {10.1111/j.1365-2389.2010.01340.x}, pages = {226 -- 236}, year = {2011}, abstract = {Land use and mineral characteristics affect the ability of surface as well as subsurface soils to sequester organic carbon and their contribution to mitigation of the greenhouse effect. There is less information about the effects of land use and soil properties on the amount and composition of organic matter (OM) for subsurface soils as compared with surface soils. Here we aimed to analyse the long-term (>= 100 years) impact of arable and forest land use and soil mineral characteristics on subsurface soil organic carbon (SOC) contents, as well as on amount and composition of OM sequentially separated by Na pyrophosphate solution (OM(PY)) from subsurface soil samples. Seven soils with different mineral characteristics (Albic and Haplic Luvisol, Colluvic and Haplic Regosol, Haplic and Vertic Cambisol, Haplic Stagnosol) were selected from within Germany. Soil samples were taken from subsurface horizons of forest and adjacent arable sites continuously used for > 100 years. The OM(PY) fractions were analysed for their OC content (OC(PY)) and characterized by Fourier transform infrared spectroscopy. Multiple regression analyses for the arable subsurface soils indicated significant positive relationships between the SOC contents and combined effects of the (i) exchangeable Ca (Ca(ex)) and oxalate-soluble Fe (Fe(ox)) and (ii) the Ca(ex) and Al(ox) contents. For these soils the increase in OC (OC(PY) multiplied by the relative C=O content of OM(PY)) and increasing contents of Ca(ex) indicated that OM(PY) mainly interacts with Ca2+. For the forest subsurface soils (pH < 5), the OC(PY) contents were related to the contents of Na-pyrophosphate-soluble Fe and Al. The long-term arable and forest land use seems to result in different OM(PY)-mineral interactions in subsurface soils. On the basis of this, we hypothesize that a long-term land-use change from arable to forest may lead to a shift from mainly OM(PY)-Ca2+ to mainly OM(PY)-Fe3+ and -Al3+ interactions if the pH of subsurface soils significantly decreases to < 5.}, language = {en} } @article{KaylerKaiserGessleretal.2011, author = {Kayler, Z. E. and Kaiser, Michael and Gessler, A. and Ellerbrock, Ruth H. and Sommer, Michael}, title = {Application of delta C-13 and delta N-15 isotopic signatures of organic matter fractions sequentially separated from adjacent arable and forest soils to identify carbon stabilization mechanisms}, series = {Biogeosciences}, volume = {8}, journal = {Biogeosciences}, number = {10}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-8-2895-2011}, pages = {2895 -- 2906}, year = {2011}, abstract = {Identifying the chemical mechanisms behind soil carbon bound in organo-mineral complexes is necessary to determine the degree to which soil organic carbon is stabilized belowground. Analysis of delta C-13 and delta N-15 isotopic signatures of stabilized OM fractions along with soil mineral characteristics may yield important information about OM-mineral associations and their processing history. We anlayzed the delta C-13 and delta N-15 isotopic signatures from two organic matter (OM) fractions along with soil mineral proxies to identify the likely binding mechanisms involved. We analyzed OM fractions hypothesized to contain carbon stabilized through organo-mineral complexes: (1) OM separated chemically with sodium pyrophosphate (OM(PY)) and (2) OM occluded in micro-structures found in the chemical extraction residue (OM(ER)). Because the OM fractions were separated from five different soils with paired forest and arable land use histories, we could address the impact of land use change on carbon binding and processing mechanisms. We used partial least squares regression to analyze patterns in the isotopic signature of OM with established mineral and chemical proxies indicative for certain binding mechanisms. We found different mechanisms predominate in each land use type. For arable soils, the formation of OM(PY)-Ca-mineral associations was identified as an important OM binding mechanism. Therefore, we hypothesize an increased stabilization of microbial processed OM(PY) through Ca2+ interactions. In general, we found the forest soils to contain on average 10\% more stabilized carbon relative to total carbon stocks, than the agricultural counter part. In forest soils, we found a positive relationship between isotopic signatures of OM(PY) and the ratio of soil organic carbon content to soil surface area (SOC/SSA). This indicates that the OM(PY) fractions of forest soils represent layers of slower exchange not directly attached to mineral surfaces. From the isotopic composition of the OM(ER) fraction, we conclude that the OM in this fraction from both land use types have undergone a different pathway to stabilization that does not involve microbial processing, which may include OM which is highly protected within soil micro-structures.}, language = {en} } @article{KaiserZedererEllerbrocketal.2016, author = {Kaiser, Michael and Zederer, Dan P. and Ellerbrock, Ruth H. and Sommer, Michael and Ludwig, Bernard}, title = {Effects of mineral characteristics on content, composition, and stability of organic matter fractions separated from seven forest topsoils of different pedogenesis}, series = {Geoderma : an international journal of soil science}, volume = {263}, journal = {Geoderma : an international journal of soil science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0016-7061}, doi = {10.1016/j.geoderma.2015.08.029}, pages = {1 -- 7}, year = {2016}, abstract = {Mineral topsoils possess large organic carbon (OC) contents but there is only limited knowledge on the mechanisms controlling the preservation of organic matter (OM) against microbial decay. Samples were taken from the uppermost mineral topsoil horizon (0 to 5 cm) of seven sites under mature deciduous forest showing OC contents between 69 and 164 g kg(-1) and a wide range in mineral characteristics. At first, organic particles and the water-extractable OM were removed from the soil samples. Thereafter, Na-pyrophosphate extractable organic matter (OM(PY)), assumed to be indicative for OM bound via cation mediated interactions, and the OM remaining in the extraction residue (OM(ER)), supposed to be indicative for OM occluded in mechanically highly stable micro-aggregates, were sequentially separated and quantified. The composition of OM(PY) and OM(ER) was analyzed by FTIR and their stability by C-14 measurements. The OC remaining in the extraction residues accounted for 38 to 59\% of the bulk soil OC (SOC) suggesting a much larger relevance of OM(ER) for the OM dynamic in the analyzed soils as compared with OM(PY) that accounted for 1.6 to 7.5\% of the SOC. The FUR analyses revealed a lower relative proportion of C=O groups in OM(ER) compared to OM(PY) indicating differences in the degree of microbial processing between these fractions. Correlation analyses suggest an increase in the stability of OM(PY) with the soil pH and contents of Na-pyrophosphate soluble Fe, Al, and Mg and an increase in the stability of OM(ER) with the soil pH and the contents of clay and oxalate-soluble Fe and Al. Despite the detected influence of soil mineral characteristics on the turnover of OM(PY) and OM(ER), the Delta C-14 signatures indicated mean residence times less than 100 years. The presence of less stabilized OM in these fractions can be derived from methodological uncertainties and/or the fast cycling compartment of mineral-associated OM. (C) 2015 Elsevier B.V. All rights reserved.}, language = {en} } @article{MitznerRehanekKernetal.2013, author = {Mitzner, Rolf and Rehanek, Jens and Kern, Jan and Gul, Sheraz and Hattne, Johan and Taguchi, Taketo and Alonso-Mori, Roberto and Tran, Rosalie and Weniger, Christian and Schr{\"o}der, Henning and Quevedo, Wilson and Laksmono, Hartawan and Sierra, Raymond G. and Han, Guangye and Lassalle-Kaiser, Benedikt and Koroidov, Sergey and Kubicek, Katharina and Schreck, Simon and Kunnus, Kristjan and Brzhezinskaya, Maria and Firsov, Alexander and Minitti, Michael P. and Turner, Joshua J. and M{\"o}ller, Stefan and Sauter, Nicholas K. and Bogan, Michael J. and Nordlund, Dennis and Schlotter, William F. and Messinger, Johannes and Borovik, Andrew S. and Techert, Simone and de Groot, Frank M. F. and F{\"o}hlisch, Alexander and Erko, Alexei and Bergmann, Uwe and Yachandra, Vittal K. and Wernet, Philippe and Yano, Junko}, title = {L-edge x-ray absorption spectroscopy of dilute systems relevant to metalloproteins using an X-ray free-electron laser}, series = {The journal of physical chemistry letters}, volume = {4}, journal = {The journal of physical chemistry letters}, number = {21}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz401837f}, pages = {3641 -- 3647}, year = {2013}, abstract = {L-edge spectroscopy of 3d transition metals provides important electronic structure information and has been used in many fields. However, the use of this method for studying dilute aqueous systems, such as metalloenzymes, has not been prevalent because of severe radiation damage and the lack of suitable detection systems. Here we present spectra from a dilute Mn aqueous solution using a high-transmission zone-plate spectrometer at the Linac Coherent Light Source (LCLS). The spectrometer has been optimized for discriminating the Mn L-edge signal from the overwhelming 0 K-edge background that arises from water and protein itself, and the ultrashort LCLS X-ray pulses can outrun X-ray induced damage. We show that the deviations of the partial-fluorescence yield-detected spectra from the true absorption can be well modeled using the state-dependence of the fluorescence yield, and discuss implications for the application of our concept to biological samples.}, language = {en} } @article{KaiserOldorffBreitbachetal.2018, author = {Kaiser, Knut and Oldorff, Silke and Breitbach, Carsten and Kappler, Christoph and Theuerkauf, Martin and Scharnweber, Tobias and Schult, Manuela and Kuester, Mathias and Engelhardt, Christof and Heinrich, Ingo and Hupfer, Michael and Schwalbe, Grit and Kirschey, Tom and Bens, Oliver}, title = {A submerged pine forest from the early Holocene in the Mecklenburg Lake District, northern Germany}, series = {Boreas}, volume = {47}, journal = {Boreas}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0300-9483}, doi = {10.1111/bor.12314}, pages = {910 -- 925}, year = {2018}, abstract = {For the first time, evidence of a submerged pine forest from the early Holocene can be documented in a central European lake. Subaquatic tree stumps were discovered in Lake Giesenschlagsee at a depth of between 2 and 5m using scuba divers, side-scan sonar and a remotely operated vehicle. Several erect stumps, anchored to the ground by roots, represent an insitu record of this former forest. Botanical determination revealed the stumps to be Scots pine (Pinus sylvestris) with an individual tree age of about 80years. The trees could not be dated by means of dendrochronology, as they are older than the regional reference chronology for pine. Radiocarbon ages from the wood range from 10880 +/- 210 to 10370 +/- 130cal. a BP, which is equivalent to the mid-Preboreal to early Boreal biozones. The trees are rooted in sedge peat, which can be dated to this period as well, using pollen stratigraphical analysis. Tilting of the peat bed by 4m indicates subsidence of the ground due to local dead ice melting, causing the trees to become submerged and preserved for millennia. Together with recently detected Lateglacial insitu tree occurrences in nearby lakes, the submerged pine forest at Giesenschlagsee represents a new and highly promising type of geo-bio-archive for the wider region. Comparable insitu pine remnants occur at some terrestrial (buried setting) and marine (submerged setting) sites in northern central Europe and beyond, but they partly differ in age. In general, the insitu pine finds document shifts of the zonal boreal forest ecosystem during the late Quaternary.}, language = {en} } @article{SimonsLewinsohnBluethgenetal.2017, author = {Simons, Nadja K. and Lewinsohn, Thomas and Bluethgen, Nico and Buscot, Francois and Boch, Steffen and Daniel, Rolf and Gossner, Martin M. and Jung, Kirsten and Kaiser, Kristin and M{\"u}ller, J{\"o}rg and Prati, Daniel and Renner, Swen C. and Socher, Stephanie A. and Sonnemann, Ilja and Weiner, Christiane N. and Werner, Michael and Wubet, Tesfaye and Wurst, Susanne and Weisser, Wolfgang W.}, title = {Contrasting effects of grassland management modes on species-abundance distributions of multiple groups}, series = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, volume = {237}, journal = {Agriculture, ecosystems \& environment : an international journal for scientific research on the relationship of agriculture and food production to the biosphere}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0167-8809}, doi = {10.1016/j.agee.2016.12.022}, pages = {143 -- 153}, year = {2017}, abstract = {Intensive land use is a major cause of biodiversity loss, but most studies comparing the response of multiple taxa rely on simple diversity measures while analyses of other community attributes are only recently gaining attention. Species-abundance distributions (SADs) are a community attribute that can be used to study changes in the overall abundance structure of species groups, and whether these changes are driven by abundant or rare species. We evaluated the effect of grassland management intensity for three land-use modes (fertilization, mowing, grazing) and their combination on species richness and SADs for three belowground (arbuscular mycorrhizal fungi, prokaryotes and insect larvae) and seven aboveground groups (vascular plants, bryophytes and lichens; arthropod herbivores; arthropod pollinators; bats and birds). Three descriptors of SADs were evaluated: general shape (abundance decay rate), proportion of rare species (rarity) and proportional abundance of the commonest species (dominance). Across groups, taxonomic richness was largely unaffected by land-use intensity and only decreased with increasing mowing intensity. Of the three SAD descriptors, abundance decay rate became steeper with increasing combined land-use intensity across groups. This reflected a decrease in rarity among plants, herbivores and vertebrates. Effects of fertilization on the three descriptors were similar to the combined land-use intensity effects. Mowing intensity only affected the SAD descriptors of insect larvae and vertebrates, while grazing intensity produced a range of effects on different descriptors in distinct groups. Overall, belowground groups had more even abundance distribtitions than aboveground groups. Strong differences among aboveground groups and between above- and belowground groups indicate that no single taxonomic group can serve as an indicator for effects in other groups. In the past, the use of SADs has been hampered by concerns over theoretical models underlying specific forms of SADs. Our study shows that SAD descriptors that are not connected to a particular model are suitable to assess the effect of land use on community structure.}, language = {en} } @article{Kaiser2021, author = {Kaiser, Michael}, title = {Spannungsfeld von Warheit und Macht}, series = {Kunsttherapeutische Stichworte}, journal = {Kunsttherapeutische Stichworte}, publisher = {fabrico}, address = {Hannover}, isbn = {978-3-946320-29-6}, pages = {210}, year = {2021}, language = {de} } @article{KaiserWehrhanWerneretal.2012, author = {Kaiser, Thomas and Wehrhan, Marc and Werner, Armin and Sommer, Michael}, title = {Regionalizing ecological moisture levels and groundwater levels in grassland areas using thermal remote sensing}, series = {Grassland science}, volume = {58}, journal = {Grassland science}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1744-6961}, doi = {10.1111/j.1744-697X.2011.00240.x}, pages = {42 -- 52}, year = {2012}, abstract = {Site-specific soil moisture and groundwater levels are key input parameters for ecological modeling. Obtaining such information in a comprehensive manner is difficult for large regions. We studied a floodplain region in the Federal State of Brandenburg, Germany, to examine the degree to which the average depth of groundwater tables can be derived from surface temperatures obtained by the ASTER radiospectrometer (spatial resolution of 90 m per pixel). A floristic ecological indicator representing the site-specific moisture level was applied to develop a proxy between the thermal satellite data and groundwater table depth. The use of spring scenes (late April to early May) from 2 years proved to be well suited for minimizing the effects of weather and land use. Vegetation surveys along transects that were 2 m wide across the pixel diagonals allowed for the calculation of average ecological moisture values of pixel-sites by applying Ellenberg-numbers. These values were used to calibrate the satellite data locally. There was a close relationship between surface temperature and the average ecological moisture value (R2 = 0.73). Average ecological moisture values were highly indicative of the average groundwater levels during a 7-year measurement series (R2 = 0.93). Satellite-supported thermal data from spring were suitable for estimating the average groundwater levels of low-lying grasslands on a larger scale. Ecological moisture values from the transect surveys effectively allowed the incorporation of relief heterogeneity within the thermal grid and the establishment of the correlation between thermal data and average groundwater table depth. Regression functions were used to produce a map of groundwater levels at the study site.}, language = {en} } @article{KubinKernGuletal.2017, author = {Kubin, Markus and Kern, Jan and Gul, Sheraz and Kroll, Thomas and Chatterjee, Ruchira and Loechel, Heike and Fuller, Franklin D. and Sierra, Raymond G. and Quevedo, Wilson and Weniger, Christian and Rehanek, Jens and Firsov, Anatoly and Laksmono, Hartawan and Weninger, Clemens and Alonso-Mori, Roberto and Nordlund, Dennis L. and Lassalle-Kaiser, Benedikt and Glownia, James M. and Krzywinski, Jacek and Moeller, Stefan and Turner, Joshua J. and Minitti, Michael P. and Dakovski, Georgi L. and Koroidov, Sergey and Kawde, Anurag and Kanady, Jacob S. and Tsui, Emily Y. and Suseno, Sandy and Han, Zhiji and Hill, Ethan and Taguchi, Taketo and Borovik, Andrew S. and Agapie, Theodor and Messinger, Johannes and Erko, Alexei and F{\"o}hlisch, Alexander and Bergmann, Uwe and Mitzner, Rolf and Yachandra, Vittal K. and Yano, Junko and Wernet, Philippe}, title = {Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers}, series = {Structural dynamics}, volume = {4}, journal = {Structural dynamics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4986627}, pages = {16}, year = {2017}, abstract = {X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn similar to 6-15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. (C) 2017 Author(s).}, language = {en} } @article{TscheuschnerKaiserLisecetal.2022, author = {Tscheuschner, Georg and Kaiser, Melanie N. and Lisec, Jan and Beslic, Denis and Muth, Thilo and Kr{\"u}ger, Maren and Mages, Hans Werner and Dorner, Brigitte G. and Knospe, Julia and Schenk, J{\"o}rg A. and Sellrie, Frank and Weller, Michael G.}, title = {MALDI-TOF-MS-based identification of monoclonal murine Anti-SARS-CoV-2 antibodies within one hour}, series = {Antibodies}, volume = {11}, journal = {Antibodies}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2073-4468}, doi = {10.3390/antib11020027}, pages = {22}, year = {2022}, abstract = {During the SARS-CoV-2 pandemic, many virus-binding monoclonal antibodies have been developed for clinical and diagnostic purposes. This underlines the importance of antibodies as universal bioanalytical reagents. However, little attention is given to the reproducibility crisis that scientific studies are still facing to date. In a recent study, not even half of all research antibodies mentioned in publications could be identified at all. This should spark more efforts in the search for practical solutions for the traceability of antibodies. For this purpose, we used 35 monoclonal antibodies against SARS-CoV-2 to demonstrate how sequence-independent antibody identification can be achieved by simple means applied to the protein. First, we examined the intact and light chain masses of the antibodies relative to the reference material NIST-mAb 8671. Already half of the antibodies could be identified based solely on these two parameters. In addition, we developed two complementary peptide mass fingerprinting methods with MALDI-TOF-MS that can be performed in 60 min and had a combined sequence coverage of over 80\%. One method is based on the partial acidic hydrolysis of the protein by 5 mM of sulfuric acid at 99 degrees C. Furthermore, we established a fast way for a tryptic digest without an alkylation step. We were able to show that the distinction of clones is possible simply by a brief visual comparison of the mass spectra. In this work, two clones originating from the same immunization gave the same fingerprints. Later, a hybridoma sequencing confirmed the sequence identity of these sister clones. In order to automate the spectral comparison for larger libraries of antibodies, we developed the online software ABID 2.0. This open-source software determines the number of matching peptides in the fingerprint spectra. We propose that publications and other documents critically relying on monoclonal antibodies with unknown amino acid sequences should include at least one antibody fingerprint. By fingerprinting an antibody in question, its identity can be confirmed by comparison with a library spectrum at any time and context.}, language = {en} } @article{HeinrichBalanzateguiBensetal.2018, author = {Heinrich, Ingo and Balanzategui, Daniel and Bens, Oliver and Blasch, Gerald and Blume, Theresa and Boettcher, Falk and Borg, Erik and Brademann, Brian and Brauer, Achim and Conrad, Christopher and Dietze, Elisabeth and Dr{\"a}ger, Nadine and Fiener, Peter and Gerke, Horst H. and G{\"u}ntner, Andreas and Heine, Iris and Helle, Gerhard and Herbrich, Marcus and Harfenmeister, Katharina and Heussner, Karl-Uwe and Hohmann, Christian and Itzerott, Sibylle and Jurasinski, Gerald and Kaiser, Knut and Kappler, Christoph and Koebsch, Franziska and Liebner, Susanne and Lischeid, Gunnar and Merz, Bruno and Missling, Klaus Dieter and Morgner, Markus and Pinkerneil, Sylvia and Plessen, Birgit and Raab, Thomas and Ruhtz, Thomas and Sachs, Torsten and Sommer, Michael and Spengler, Daniel and Stender, Vivien and St{\"u}ve, Peter and Wilken, Florian}, title = {Interdisciplinary Geo-ecological Research across Time Scales in the Northeast German Lowland Observatory (TERENO-NE)}, series = {Vadose zone journal}, volume = {17}, journal = {Vadose zone journal}, number = {1}, publisher = {Soil Science Society of America}, address = {Madison}, issn = {1539-1663}, doi = {10.2136/vzj2018.06.0116}, pages = {25}, year = {2018}, abstract = {The Northeast German Lowland Observatory (TERENO-NE) was established to investigate the regional impact of climate and land use change. TERENO-NE focuses on the Northeast German lowlands, for which a high vulnerability has been determined due to increasing temperatures and decreasing amounts of precipitation projected for the coming decades. To facilitate in-depth evaluations of the effects of climate and land use changes and to separate the effects of natural and anthropogenic drivers in the region, six sites were chosen for comprehensive monitoring. In addition, at selected sites, geoarchives were used to substantially extend the instrumental records back in time. It is this combination of diverse disciplines working across different time scales that makes the observatory TERENO-NE a unique observation platform. We provide information about the general characteristics of the observatory and its six monitoring sites and present examples of interdisciplinary research activities at some of these sites. We also illustrate how monitoring improves process understanding, how remote sensing techniques are fine-tuned by the most comprehensive ground-truthing site DEMMIN, how soil erosion dynamics have evolved, how greenhouse gas monitoring of rewetted peatlands can reveal unexpected mechanisms, and how proxy data provides a long-term perspective of current ongoing changes.}, language = {en} }