@misc{AndersonBahnikBarnettCowanetal.2016, author = {Anderson, Christopher J. and Bahnik, Stepan and Barnett-Cowan, Michael and Bosco, Frank A. and Chandler, Jesse and Chartier, Christopher R. and Cheung, Felix and Christopherson, Cody D. and Cordes, Andreas and Cremata, Edward J. and Della Penna, Nicolas and Estel, Vivien and Fedor, Anna and Fitneva, Stanka A. and Frank, Michael C. and Grange, James A. and Hartshorne, Joshua K. and Hasselman, Fred and Henninger, Felix and van der Hulst, Marije and Jonas, Kai J. and Lai, Calvin K. and Levitan, Carmel A. and Miller, Jeremy K. and Moore, Katherine S. and Meixner, Johannes M. and Munafo, Marcus R. and Neijenhuijs, Koen I. and Nilsonne, Gustav and Nosek, Brian A. and Plessow, Franziska and Prenoveau, Jason M. and Ricker, Ashley A. and Schmidt, Kathleen and Spies, Jeffrey R. and Stieger, Stefan and Strohminger, Nina and Sullivan, Gavin B. and van Aert, Robbie C. M. and van Assen, Marcel A. L. M. and Vanpaemel, Wolf and Vianello, Michelangelo and Voracek, Martin and Zuni, Kellylynn}, title = {Response to Comment on "Estimating the reproducibility of psychological science"}, series = {Science}, volume = {351}, journal = {Science}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.aad9163}, pages = {1162 -- 1165}, year = {2016}, abstract = {Gilbert et al. conclude that evidence from the Open Science Collaboration's Reproducibility Project: Psychology indicates high reproducibility, given the study methodology. Their very optimistic assessment is limited by statistical misconceptions and by causal inferences from selectively interpreted, correlational data. Using the Reproducibility Project: Psychology data, both optimistic and pessimistic conclusions about reproducibility are possible, and neither are yet warranted.}, language = {en} } @article{TobieTeanbyCoustenisetal.2014, author = {Tobie, G. and Teanby, N. A. and Coustenis, A. and Jaumann, Ralf and Raulin, E. and Schmidt, J. and Carrasco, N. and Coates, Andrew J. and Cordier, D. and De Kok, R. and Geppert, W. D. and Lebreton, J. -P. and Lefevre, A. and Livengood, T. A. and Mandt, K. E. and Mitri, G. and Nimmo, F. and Nixon, C. A. and Norman, L. and Pappalardo, R. T. and Postberg, F. and Rodriguez, S. and SchuizeMakuch, D. and Soderblom, J. M. and Solomonidou, A. and Stephan, K. and Stofan, E. R. and Turtle, E. P. and Wagner, R. J. and West, R. A. and Westlake, J. H.}, title = {Science goals and mission concept for the future exploration of Titan and Enceladus}, series = {Planetary and space science}, volume = {104}, journal = {Planetary and space science}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-0633}, doi = {10.1016/j.pss.2014.10.002}, pages = {59 -- 77}, year = {2014}, language = {en} } @misc{ArnisonBibbBierbaumetal.2013, author = {Arnison, Paul G. and Bibb, Mervyn J. and Bierbaum, Gabriele and Bowers, Albert A. and Bugni, Tim S. and Bulaj, Grzegorz and Camarero, Julio A. and Campopiano, Dominic J. and Challis, Gregory L. and Clardy, Jon and Cotter, Paul D. and Craik, David J. and Dawson, Michael and Dittmann-Th{\"u}nemann, Elke and Donadio, Stefano and Dorrestein, Pieter C. and Entian, Karl-Dieter and Fischbach, Michael A. and Garavelli, John S. and Goeransson, Ulf and Gruber, Christian W. and Haft, Daniel H. and Hemscheidt, Thomas K. and Hertweck, Christian and Hill, Colin and Horswill, Alexander R. and Jaspars, Marcel and Kelly, Wendy L. and Klinman, Judith P. and Kuipers, Oscar P. and Link, A. James and Liu, Wen and Marahiel, Mohamed A. and Mitchell, Douglas A. and Moll, Gert N. and Moore, Bradley S. and Mueller, Rolf and Nair, Satish K. and Nes, Ingolf F. and Norris, Gillian E. and Olivera, Baldomero M. and Onaka, Hiroyasu and Patchett, Mark L. and Piel, J{\"o}rn and Reaney, Martin J. T. and Rebuffat, Sylvie and Ross, R. Paul and Sahl, Hans-Georg and Schmidt, Eric W. and Selsted, Michael E. and Severinov, Konstantin and Shen, Ben and Sivonen, Kaarina and Smith, Leif and Stein, Torsten and Suessmuth, Roderich D. and Tagg, John R. and Tang, Gong-Li and Truman, Andrew W. and Vederas, John C. and Walsh, Christopher T. and Walton, Jonathan D. and Wenzel, Silke C. and Willey, Joanne M. and van der Donk, Wilfred A.}, title = {Ribosomally synthesized and post-translationally modified peptide natural products overview and recommendations for a universal nomenclature}, series = {Natural product reports : a journal of current developments in bio-organic chemistry}, volume = {30}, journal = {Natural product reports : a journal of current developments in bio-organic chemistry}, number = {1}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {0265-0568}, doi = {10.1039/c2np20085f}, pages = {108 -- 160}, year = {2013}, abstract = {This review presents recommended nomenclature for the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs), a rapidly growing class of natural products. The current knowledge regarding the biosynthesis of the >20 distinct compound classes is also reviewed, and commonalities are discussed.}, language = {en} } @article{MartinezGonzalezPastorYabarLaggetal.2016, author = {Martinez Gonzalez, M. J. and Pastor Yabar, A. and Lagg, A. and Asensio Ramos, A. and Collados Vera, M. and Solanki, S. K. and Balthasar, H. and Berkefeld, T. and Denker, Carsten and Doerr, H. P. and Feller, A. and Franz, M. and Gonz{\´a}lez Manrique, Sergio Javier and Hofmann, A. and Kneer, F. and Kuckein, Christoph and Louis, R. and von der L{\"u}he, O. and Nicklas, H. and Orozco, D. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Verma, Meetu and Waldman, T. and Volkmer, R.}, title = {Inference of magnetic fields in the very quiet Sun}, series = {Journal of geophysical research : Earth surface}, volume = {596}, journal = {Journal of geophysical research : Earth surface}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628449}, pages = {11}, year = {2016}, abstract = {Context. Over the past 20 yr, the quietest areas of the solar surface have revealed a weak but extremely dynamic magnetism occurring at small scales (<500 km), which may provide an important contribution to the dynamics and energetics of the outer layers of the atmosphere. Understanding this magnetism requires the inference of physical quantities from high-sensitivity spectro-polarimetric data with high spatio-temporal resolution. Aims. We present high-precision spectro-polarimetric data with high spatial resolution (0.4") of the very quiet Sun at 1.56 mu m obtained with the GREGOR telescope to shed some light on this complex magnetism. Methods. We used inversion techniques in two main approaches. First, we assumed that the observed profiles can be reproduced with a constant magnetic field atmosphere embedded in a field-free medium. Second, we assumed that the resolution element has a substructure with either two constant magnetic atmospheres or a single magnetic atmosphere with gradients of the physical quantities along the optical depth, both coexisting with a global stray-light component. Results. Half of our observed quiet-Sun region is better explained by magnetic substructure within the resolution element. However, we cannot distinguish whether this substructure comes from gradients of the physical parameters along the line of sight or from horizontal gradients (across the surface). In these pixels, a model with two magnetic components is preferred, and we find two distinct magnetic field populations. The population with the larger filling factor has very weak (similar to 150 G) horizontal fields similar to those obtained in previous works. We demonstrate that the field vector of this population is not constrained by the observations, given the spatial resolution and polarimetric accuracy of our data. The topology of the other component with the smaller filling factor is constrained by the observations for field strengths above 250 G: we infer hG fields with inclinations and azimuth values compatible with an isotropic distribution. The filling factors are typically below 30\%. We also find that the flux of the two polarities is not balanced. From the other half of the observed quiet-Sun area similar to 50\% are two-lobed Stokes V profiles, meaning that 23\% of the field of view can be adequately explained with a single constant magnetic field embedded in a non-magnetic atmosphere. The magnetic field vector and filling factor are reliable inferred in only 50\% based on the regular profiles. Therefore, 12\% of the field of view harbour hG fields with filling factors typically below 30\%. At our present spatial resolution, 70\% of the pixels apparently are non-magnetised.}, language = {en} } @article{VermaDenkerBalthasaretal.2016, author = {Verma, Meetu and Denker, Carsten and Balthasar, H. and Kuckein, Christoph and Gonz{\´a}lez Manrique, Sergio Javier and Sobotka, M. and Gonzalez, N. Bello and Hoch, S. and Diercke, Andrea and Kummerow, Philipp and Berkefeld, T. and Collados Vera, M. and Feller, A. and Hofmann, A. and Kneer, F. and Lagg, A. and L{\"o}hner-B{\"o}ttcher, J. and Nicklas, H. and Pastor Yabar, A. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Schubert, M. and Sigwarth, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Horizontal flow fields in and around a small active region The transition period between flux emergence and decay}, series = {Polymers}, volume = {596}, journal = {Polymers}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201628380}, pages = {12}, year = {2016}, abstract = {Context. The solar magnetic field is responsible for all aspects of solar activity. Thus, emergence of magnetic flux at the surface is the first manifestation of the ensuing solar activity. Aims. Combining high-resolution and synoptic observations aims to provide a comprehensive description of flux emergence at photospheric level and of the growth process that eventually leads to a mature active region. Methods. The small active region NOAA 12118 emerged on 2014 July 17 and was observed one day later with the 1.5-m GREGOR solar telescope on 2014 July 18. High-resolution time-series of blue continuum and G-band images acquired in the blue imaging channel (BIC) of the GREGOR Fabry-Perot Interferometer (GFPI) were complemented by synoptic line-of-sight magnetograms and continuum images obtained with the Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO). Horizontal proper motions and horizontal plasma velocities were computed with local correlation tracking (LCT) and the differential affine velocity estimator (DAVE), respectively. Morphological image processing was employed to measure the photometric and magnetic area, magnetic flux, and the separation profile of the emerging flux region during its evolution. Results. The computed growth rates for photometric area, magnetic area, and magnetic flux are about twice as high as the respective decay rates. The space-time diagram using HMI magnetograms of five days provides a comprehensive view of growth and decay. It traces a leaf-like structure, which is determined by the initial separation of the two polarities, a rapid expansion phase, a time when the spread stalls, and a period when the region slowly shrinks again. The separation rate of 0.26 km s(-1) is highest in the initial stage, and it decreases when the separation comes to a halt. Horizontal plasma velocities computed at four evolutionary stages indicate a changing pattern of inflows. In LCT maps we find persistent flow patterns such as outward motions in the outer part of the two major pores, a diverging feature near the trailing pore marking the site of upwelling plasma and flux emergence, and low velocities in the interior of dark pores. We detected many elongated rapidly expanding granules between the two major polarities, with dimensions twice as large as the normal granules.}, language = {en} } @article{BalthasarGoemoeryGonzalezManriqueetal.2016, author = {Balthasar, H. and G{\"o}m{\"o}ry, P. and Gonz{\´a}lez Manrique, Sergio Javier and Kuckein, Christoph and Kavka, J. and Kucera, A. and Schwartz, P. and Vaskova, R. and Berkefeld, T. and Collados Vera, M. and Denker, Carsten and Feller, A. and Hofmann, A. and Lagg, A. and Nicklas, H. and Suarez, D. and Pastor Yabar, A. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Spectropolarimetric observations of an arch filament system with the GREGOR solar telescope}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612432}, pages = {1050 -- 1056}, year = {2016}, abstract = {Arch filament systems occur in active sunspot groups, where a fibril structure connects areas of opposite magnetic polarity, in contrast to active region filaments that follow the polarity inversion line. We used the GREGOR Infrared Spectrograph (GRIS) to obtain the full Stokes vector in the spectral lines SiI lambda 1082.7 nm, He I lambda 1083.0 nm, and Ca I lambda 1083.9 nm. We focus on the near-infrared calcium line to investigate the photospheric magnetic field and velocities, and use the line core intensities and velocities of the helium line to study the chromospheric plasma. The individual fibrils of the arch filament system connect the sunspot with patches of magnetic polarity opposite to that of the spot. These patches do not necessarily coincide with pores, where the magnetic field is strongest. Instead, areas are preferred not far from the polarity inversion line. These areas exhibit photospheric downflows of moderate velocity, but significantly higher downflows of up to 30 km s(-1) in the chromospheric helium line. Our findings can be explained with new emerging flux where the matter flows downward along the field lines of rising flux tubes, in agreement with earlier results. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} } @article{AldorettaStLouisRichardsonetal.2016, author = {Aldoretta, E. J. and St-Louis, N. and Richardson, N. D. and Moffat, Anthony F. J. and Eversberg, T. and Hill, G. M. and Shenar, Tomer and Artigau, E. and Gauza, B. and Knapen, J. H. and Kubat, Jiř{\´i} and Kubatova, Brankica and Maltais-Tariant, R. and Munoz, M. and Pablo, H. and Ramiaramanantsoa, T. and Richard-Laferriere, A. and Sablowski, D. P. and Simon-Diaz, S. and St-Jean, L. and Bolduan, F. and Dias, F. M. and Dubreuil, P. and Fuchs, D. and Garrel, T. and Grutzeck, G. and Hunger, T. and Kuesters, D. and Langenbrink, M. and Leadbeater, R. and Li, D. and Lopez, A. and Mauclaire, B. and Moldenhawer, T. and Potter, M. and dos Santos, E. M. and Schanne, L. and Schmidt, J. and Sieske, H. and Strachan, J. and Stinner, E. and Stinner, P. and Stober, B. and Strandbaek, K. and Syder, T. and Verilhac, D. and Waldschlaeger, U. and Weiss, D. and Wendt, A.}, title = {An extensive spectroscopic time series of three Wolf-Rayet stars - I. The lifetime of large-scale structures in the wind of WR 134}, series = {Monthly notices of the Royal Astronomical Society}, volume = {460}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1188}, pages = {3407 -- 3417}, year = {2016}, abstract = {During the summer of 2013, a 4-month spectroscopic campaign took place to observe the variabilities in three Wolf-Rayet stars. The spectroscopic data have been analysed for WR 134 (WN6b), to better understand its behaviour and long-term periodicity, which we interpret as arising from corotating interaction regions (CIRs) in the wind. By analysing the variability of the He ii lambda 5411 emission line, the previously identified period was refined to P = 2.255 +/- 0.008 (s.d.) d. The coherency time of the variability, which we associate with the lifetime of the CIRs in the wind, was deduced to be 40 +/- 6 d, or similar to 18 cycles, by cross-correlating the variability patterns as a function of time. When comparing the phased observational grey-scale difference images with theoretical grey-scales previously calculated from models including CIRs in an optically thin stellar wind, we find that two CIRs were likely present. A separation in longitude of Delta I center dot a parts per thousand integral 90A degrees was determined between the two CIRs and we suggest that the different maximum velocities that they reach indicate that they emerge from different latitudes. We have also been able to detect observational signatures of the CIRs in other spectral lines (C iv lambda lambda 5802,5812 and He i lambda 5876). Furthermore, a DAC was found to be present simultaneously with the CIR signatures detected in the He i lambda 5876 emission line which is consistent with the proposed geometry of the large-scale structures in the wind. Small-scale structures also show a presence in the wind, simultaneously with the larger scale structures, showing that they do in fact co-exist.}, language = {en} } @article{JonesArridgeCoatesetal.2009, author = {Jones, Geraint H. and Arridge, Christopher S. and Coates, Andrew J. and Lewis, Gethyn R. and Kanani, Sheila and Wellbrock, Anne and Young, David T. and Crary, Frank J. and Tokar, Robert L. and Wilson, R. J. and Hill, Thomas W. and Johnson, Robert E. and Mitchell, Donald G. and Schmidt, J{\"u}rgen and Kempf, Sascha and Beckmann, Uwe and Russell, Christopher T. and Jia, Y. D. and Dougherty, Michele K. and Waite, J. Hunter and Magee, Brian A.}, title = {Fine jet structure of electrically charged grains in Enceladus' plume}, issn = {0094-8276}, doi = {10.1029/2009gl038284}, year = {2009}, abstract = {By traversing the plume erupting from high southern latitudes on Saturn's moon Enceladus, Cassini orbiter instruments can directly sample the material therein. Cassini Plasma Spectrometer, CAPS, data show that a major plume component comprises previously-undetected particles of nanometer scales and larger that bridge the mass gap between previously observed gaseous species and solid icy grains. This population is electrically charged both negative and positive, indicating that subsurface triboelectric charging, i.e., contact electrification of condensed plume material may occur through mutual collisions within vents. The electric field of Saturn's magnetosphere controls the jets' morphologies, separating particles according to mass and charge. Fine-scale structuring of these particles' spatial distribution correlates with discrete plume jets' sources, and reveals locations of other possible active regions. The observed plume population likely forms a major component of high velocity nanometer particle streams detected outside Saturn's magnetosphere.}, language = {en} } @article{GonzalezManriqueKuckeinPastorYabaretal.2016, author = {Gonzalez Manrique, Sergio Javier and Kuckein, Christoph and Pastor Yabar, A. and Collados Vera, M. and Denker, Carsten and Fischer, C. E. and G{\"o}m{\"o}ry, P. and Diercke, Andrea and Gonzalez, N. Bello and Schlichenmaier, R. and Balthasar, H. and Berkefeld, T. and Feller, A. and Hoch, S. and Hofmann, A. and Kneer, F. and Lagg, A. and Nicklas, H. and Orozco Suarez, D. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Verma, Meetu and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Fitting peculiar spectral profiles in He I 10830 angstrom absorption features}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201512433}, pages = {1057 -- 1063}, year = {2016}, abstract = {The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He i 10830 triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He i 10830 triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub-and supersonic downflow velocities of up to 32 km s(-1) for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest. (C) 2016 WILEY-VCH Verlag GmbH\& Co. KGaA, Weinheim}, language = {en} } @article{VermaDenkerBoehmetal.2016, author = {Verma, Meetu and Denker, Carsten and B{\"o}hm, F. and Balthasar, H. and Fischer, C. E. and Kuckein, Christoph and Gonzalez, N. Bello and Berkefeld, T. and Collados Vera, M. and Diercke, Andrea and Feller, A. and Gonzalez Manrique, Sergio Javier and Hofmann, A. and Lagg, A. and Nicklas, H. and Orozco Suarez, D. and Pator Yabar, A. and Rezaei, R. and Schlichenmaier, R. and Schmidt, D. and Schmidt, W. and Sigwarth, M. and Sobotka, M. and Solanki, S. K. and Soltau, D. and Staude, J. and Strassmeier, Klaus G. and Volkmer, R. and von der L{\"u}he, O. and Waldmann, T.}, title = {Flow and magnetic field properties in the trailing sunspots of active region NOAA 12396}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {337}, journal = {Astronomische Nachrichten = Astronomical notes}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201612447}, pages = {1090 -- 1098}, year = {2016}, abstract = {Improved measurements of the photospheric and chromospheric three-dimensional magnetic and flow fields are crucial for a precise determination of the origin and evolution of active regions. We present an illustrative sample of multi-instrument data acquired during a two-week coordinated observing campaign in August 2015 involving, among others, the GREGOR solar telescope (imaging and near-infrared spectroscopy) and the space missions Solar Dynamics Observatory (SDO) and Interface Region Imaging Spectrograph (IRIS). The observations focused on the trailing part of active region NOAA 12396 with complex polarity inversion lines and strong intrusions of opposite polarity flux. The GREGOR Infrared Spectrograph (GRIS) provided Stokes IQUV spectral profiles in the photospheric Si i.1082.7 nm line, the chromospheric He I lambda 1083.0 nm triplet, and the photospheric Ca I lambda 1083.9 nm line. Carefully calibrated GRIS scans of the active region provided maps of Doppler velocity and magnetic field at different atmospheric heights. We compare quick-look maps with those obtained with the " Stokes Inversions based on Response functions" (SIR) code, which furnishes deeper insight into the magnetic properties of the region. We find supporting evidence that newly emerging flux and intruding opposite polarity flux are hampering the formation of penumbrae, i.e., a penumbra fully surrounding a sunspot is only expected after cessation of flux emergence in proximity to the sunspots. (C) 2016 WILEY-VCH Verlag GmbH\& Co.KGaA, Weinheim}, language = {en} }