@article{RischStollSchomoelleretal.2020, author = {Risch, Lucie and Stoll, Josefine and Schom{\"o}ller, Anne and Engel, Tilman and Mayer, Frank and Cassel, Michael}, title = {Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons}, series = {Frontiers in physiology}, volume = {12}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.617497}, pages = {1 -- 8}, year = {2020}, abstract = {Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound "Advanced Dynamic Flow" before (Upre) and 5, 30, 60, and 120 min (U5-U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95\% CI: 2.8-9.9) and 1.7 (0.4-2.9), p < 0.01]. Overall, 63\% of symptomatic and 47\% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11\% showed persisting IBF and 21 and 42\% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3-4.5) and 0.9 (0.5-1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8-2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47-63\% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels ("responders"). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous "neovascularization."}, language = {en} } @article{MuellerStollMuelleretal.2018, author = {Mueller, Juliane and Stoll, Josefine and Mueller, Steffen and Mayer, Frank}, title = {Dose-response relationship of core-specific sensorimotor interventions in healthy, welltrained participants}, series = {Trials}, volume = {19}, journal = {Trials}, number = {424}, publisher = {BioMed Central}, address = {London}, issn = {1745-6215}, doi = {10.1186/s13063-018-2799-9}, pages = {8}, year = {2018}, abstract = {Background: Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk, improve athletic performance and prevent back pain. However, the dose-response relationship and, therefore, the dose required to improve trunk function is still under debate. The purpose of the present trial will be to compare four different intervention strategies of sensorimotor exercises that will result in improved trunk function. Methods/design: A single-blind, four-armed, randomized controlled trial with a 3-week (home-based) intervention phase and two measurement days pre and post intervention (M1/M2) is designed. Experimental procedures on both measurement days will include evaluation of maximum isokinetic and isometric trunk strength (extension/flexion, rotation) including perturbations, as well as neuromuscular trunk activity while performing strength testing. The primary outcome is trunk strength (peak torque). Neuromuscular activity (amplitude, latencies as a response to perturbation) serves as secondary outcome. The control group will perform a standardized exercise program of four sensorimotor exercises (three sets of 10 repetitions) in each of six training sessions (30 min duration) over 3 weeks. The intervention groups' programs differ in the number of exercises, sets per exercise and, therefore, overall training amount (group I: six sessions, three exercises, two sets; group II: six sessions, two exercises, two sets; group III: six sessions, one exercise, three sets). The intervention programs of groups I, II and III include additional perturbations for all exercises to increase both the difficulty and the efficacy of the exercises performed. Statistical analysis will be performed after examining the underlying assumptions for parametric and non-parametric testing. Discussion: The results of the study will be clinically relevant, not only for researchers but also for (sports) therapists, physicians, coaches, athletes and the general population who have the aim of improving trunk function.}, language = {en} } @misc{MuellerStollMuelleretal.2019, author = {Mueller, Juliane and Stoll, Josefine and Mueller, Steffen and Mayer, Frank}, title = {Dose-response relationship of core-specific sensorimotor interventions in healthy, welltrained participants}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {499}, issn = {1866-8364}, doi = {10.25932/publishup-42241}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-422414}, year = {2019}, abstract = {Background: Core-specific sensorimotor exercises are proven to enhance neuromuscular activity of the trunk, improve athletic performance and prevent back pain. However, the dose-response relationship and, therefore, the dose required to improve trunk function is still under debate. The purpose of the present trial will be to compare four different intervention strategies of sensorimotor exercises that will result in improved trunk function. Methods/design: A single-blind, four-armed, randomized controlled trial with a 3-week (home-based) intervention phase and two measurement days pre and post intervention (M1/M2) is designed. Experimental procedures on both measurement days will include evaluation of maximum isokinetic and isometric trunk strength (extension/flexion, rotation) including perturbations, as well as neuromuscular trunk activity while performing strength testing. The primary outcome is trunk strength (peak torque). Neuromuscular activity (amplitude, latencies as a response to perturbation) serves as secondary outcome. The control group will perform a standardized exercise program of four sensorimotor exercises (three sets of 10 repetitions) in each of six training sessions (30 min duration) over 3 weeks. The intervention groups' programs differ in the number of exercises, sets per exercise and, therefore, overall training amount (group I: six sessions, three exercises, two sets; group II: six sessions, two exercises, two sets; group III: six sessions, one exercise, three sets). The intervention programs of groups I, II and III include additional perturbations for all exercises to increase both the difficulty and the efficacy of the exercises performed. Statistical analysis will be performed after examining the underlying assumptions for parametric and non-parametric testing. Discussion: The results of the study will be clinically relevant, not only for researchers but also for (sports) therapists, physicians, coaches, athletes and the general population who have the aim of improving trunk function.}, language = {en} } @misc{RischStollSchomoelleretal.2021, author = {Risch, Lucie and Stoll, Josefine and Schom{\"o}ller, Anne and Engel, Tilman and Mayer, Frank and Cassel, Michael}, title = {Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8364}, doi = {10.25932/publishup-54286}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-542865}, pages = {1 -- 8}, year = {2021}, abstract = {Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound "Advanced Dynamic Flow" before (Upre) and 5, 30, 60, and 120 min (U5-U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95\% CI: 2.8-9.9) and 1.7 (0.4-2.9), p < 0.01]. Overall, 63\% of symptomatic and 47\% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11\% showed persisting IBF and 21 and 42\% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3-4.5) and 0.9 (0.5-1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8-2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47-63\% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels ("responders"). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous "neovascularization."}, language = {en} }