@article{CasselStollSchugardtetal.2019, author = {Cassel, Michael and Stoll, Josefine and Schugardt, Monique and Mayer, Frank}, title = {Overuse and injury prevention}, series = {Elite youth cycling}, journal = {Elite youth cycling}, publisher = {Routledge}, address = {London}, isbn = {978-1-315-11077-6}, pages = {141 -- 159}, year = {2019}, language = {en} } @article{RischStollSchomoelleretal.2020, author = {Risch, Lucie and Stoll, Josefine and Schom{\"o}ller, Anne and Engel, Tilman and Mayer, Frank and Cassel, Michael}, title = {Intraindividual Doppler Flow Response to Exercise Differs Between Symptomatic and Asymptomatic Achilles Tendons}, series = {Frontiers in physiology}, volume = {12}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne, Schweiz}, issn = {1664-042X}, doi = {10.3389/fphys.2021.617497}, pages = {1 -- 8}, year = {2020}, abstract = {Objective: This study investigated intraindividual differences of intratendinous blood flow (IBF) in response to running exercise in participants with Achilles tendinopathy. Design: This is a cross-sectional study. Setting: The study was conducted at the University Outpatient Clinic. Participants: Sonographic detectable intratendinous blood flow was examined in symptomatic and contralateral asymptomatic Achilles tendons of 19 participants (42 ± 13 years, 178 ± 10 cm, 76 ± 12 kg, VISA-A 75 ± 16) with clinically diagnosed unilateral Achilles tendinopathy and sonographic evident tendinosis. Intervention: IBF was assessed using Doppler ultrasound "Advanced Dynamic Flow" before (Upre) and 5, 30, 60, and 120 min (U5-U120) after a standardized submaximal constant load run. Main Outcome Measure: IBF was quantified by counting the number (n) of vessels in each tendon. Results: At Upre, IBF was higher in symptomatic compared with asymptomatic tendons [mean 6.3 (95\% CI: 2.8-9.9) and 1.7 (0.4-2.9), p < 0.01]. Overall, 63\% of symptomatic and 47\% of asymptomatic Achilles tendons responded to exercise, whereas 16 and 11\% showed persisting IBF and 21 and 42\% remained avascular throughout the investigation. At U5, IBF increased in both symptomatic and asymptomatic tendons [difference to baseline: 2.4 (0.3-4.5) and 0.9 (0.5-1.4), p = 0.05]. At U30 to U120, IBF was still increased in symptomatic but not in asymptomatic tendons [mean difference to baseline: 1.9 (0.8-2.9) and 0.1 (-0.9 to 1.2), p < 0.01]. Conclusion: Irrespective of pathology, 47-63\% of Achilles tendons responded to exercise with an immediate acute physiological IBF increase by an average of one to two vessels ("responders"). A higher amount of baseline IBF (approximately five vessels) and a prolonged exercise-induced IBF response found in symptomatic ATs indicate a pain-associated altered intratendinous "neovascularization."}, language = {en} } @inproceedings{MuellerCasselMuelleretal.2014, author = {M{\"u}ller, Steffen and Cassel, Michael and M{\"u}ller, Juliane and Stoll, Josefine and Baur, Heiner and Mayer, Frank}, title = {Trunk strength in adolescent athletes with Spondylolisthesis with/without back pain during training: Pilot study}, series = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, volume = {46}, booktitle = {Medicine and science in sports and exercise : official journal of the American College of Sports Medicine}, number = {5}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0195-9131}, pages = {642 -- 642}, year = {2014}, language = {en} } @misc{MuellerMuellerStolletal.2017, author = {M{\"u}ller, Steffen and M{\"u}ller, Juliane and Stoll, Josefine and Prieske, Olaf and Cassel, Michael and Mayer, Frank}, title = {Incidence of back pain in adolescent athletes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-101874}, pages = {5}, year = {2017}, abstract = {Background Recently, the incidence rate of back pain (BP) in adolescents has been reported at 21\%. However, the development of BP in adolescent athletes is unclear. Hence, the purpose of this study was to examine the incidence of BP in young elite athletes in relation to gender and type of sport practiced. Methods Subjective BP was assessed in 321 elite adolescent athletes (m/f 57\%/43\%; 13.2 ± 1.4 years; 163.4 ± 11.4 cm; 52.6 ± 12.6 kg; 5.0 ± 2.6 training yrs; 7.6 ± 5.3 training h/week). Initially, all athletes were free of pain. The main outcome criterion was the incidence of back pain [\%] analyzed in terms of pain development from the first measurement day (M1) to the second measurement day (M2) after 2.0 ± 1.0 year. Participants were classified into athletes who developed back pain (BPD) and athletes who did not develop back pain (nBPD). BP (acute or within the last 7 days) was assessed with a 5-step face scale (face 1-2 = no pain; face 3-5 = pain). BPD included all athletes who reported faces 1 and 2 at M1 and faces 3 to 5 at M2. nBPD were all athletes who reported face 1 or 2 at both M1 and M2. Data was analyzed descriptively. Additionally, a Chi2 test was used to analyze gender- and sport-specific differences (p = 0.05). Results Thirty-two athletes were categorized as BPD (10\%). The gender difference was 5\% (m/f: 12\%/7\%) but did not show statistical significance (p = 0.15). The incidence of BP ranged between 6 and 15\% for the different sport categories. Game sports (15\%) showed the highest, and explosive strength sports (6\%) the lowest incidence. Anthropometrics or training characteristics did not significantly influence BPD (p = 0.14 gender to p = 0.90 sports; r2 = 0.0825). Conclusions BP incidence was lower in adolescent athletes compared to young non-athletes and even to the general adult population. Consequently, it can be concluded that high-performance sports do not lead to an additional increase in back pain incidence during early adolescence. Nevertheless, back pain prevention programs should be implemented into daily training routines for sport categories identified as showing high incidence rates.}, language = {en} } @article{MuellerMuellerStolletal.2016, author = {M{\"u}ller, Steffen and M{\"u}ller, Juliane and Stoll, Josefine and Prieske, Olaf and Cassel, Michael and Mayer, Frank}, title = {Incidence of back pain in adolescent athletes}, series = {BMC sports science, medicine \& rehabilitation}, volume = {8}, journal = {BMC sports science, medicine \& rehabilitation}, publisher = {BioMed Central}, address = {London}, issn = {2052-1847}, doi = {10.1186/s13102-016-0064-7}, pages = {5}, year = {2016}, abstract = {Background Recently, the incidence rate of back pain (BP) in adolescents has been reported at 21\%. However, the development of BP in adolescent athletes is unclear. Hence, the purpose of this study was to examine the incidence of BP in young elite athletes in relation to gender and type of sport practiced. Methods Subjective BP was assessed in 321 elite adolescent athletes (m/f 57\%/43\%; 13.2 ± 1.4 years; 163.4 ± 11.4 cm; 52.6 ± 12.6 kg; 5.0 ± 2.6 training yrs; 7.6 ± 5.3 training h/week). Initially, all athletes were free of pain. The main outcome criterion was the incidence of back pain [\%] analyzed in terms of pain development from the first measurement day (M1) to the second measurement day (M2) after 2.0 ± 1.0 year. Participants were classified into athletes who developed back pain (BPD) and athletes who did not develop back pain (nBPD). BP (acute or within the last 7 days) was assessed with a 5-step face scale (face 1-2 = no pain; face 3-5 = pain). BPD included all athletes who reported faces 1 and 2 at M1 and faces 3 to 5 at M2. nBPD were all athletes who reported face 1 or 2 at both M1 and M2. Data was analyzed descriptively. Additionally, a Chi2 test was used to analyze gender- and sport-specific differences (p = 0.05). Results Thirty-two athletes were categorized as BPD (10\%). The gender difference was 5\% (m/f: 12\%/7\%) but did not show statistical significance (p = 0.15). The incidence of BP ranged between 6 and 15\% for the different sport categories. Game sports (15\%) showed the highest, and explosive strength sports (6\%) the lowest incidence. Anthropometrics or training characteristics did not significantly influence BPD (p = 0.14 gender to p = 0.90 sports; r2 = 0.0825). Conclusions BP incidence was lower in adolescent athletes compared to young non-athletes and even to the general adult population. Consequently, it can be concluded that high-performance sports do not lead to an additional increase in back pain incidence during early adolescence. Nevertheless, back pain prevention programs should be implemented into daily training routines for sport categories identified as showing high incidence rates.}, language = {en} } @article{CasselStollMayer2015, author = {Cassel, Michael and Stoll, Josefine and Mayer, Frank}, title = {Tendinopathies of the Lower Extremities in Sport - Diagnostics and Therapy}, series = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, volume = {29}, journal = {Sportverletzung, Sportschaden : Grundlagen, Pr{\"a}vention, Rehabilitation}, number = {2}, publisher = {Thieme}, address = {Stuttgart}, issn = {0932-0555}, doi = {10.1055/s-0034-1399668}, pages = {87 -- 98}, year = {2015}, abstract = {Tendinopathies are frequently the cause of chronic, load-dependent complaints of the lower extremity. Commonly, the large tendons of the ankle and knee joints are affected, especially the Achilles and patellar tendons. Repeated overuse in sports and/or daily activities is assumed as the aetiology. Besides the clinical examination including a comprehensive anamnesis of pain and training/loading, sonographic imaging has a high training/loading relevance for the diagnosis of tendon pathologies of the lower extremity. Training concepts are considered in first line as the treatment of choice. A combination with physical therapy interventions can be useful. In cases of a more severe pathology and long-standing complaints multimodal therapeutic options should be employed. The use of surgical treatment procedures should only be taken into account in case of failed response to conservative treatment.}, language = {de} } @article{MuellerStollMuelleretal.2017, author = {M{\"u}ller, Steffen and Stoll, Josefine and Mueller, Juliane and Cassel, Michael and Mayer, Frank}, title = {Trunk Muscle Activity during Drop Jump Performance in Adolescent Athletes with Back Pain}, series = {Frontiers in physiology}, volume = {8}, journal = {Frontiers in physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2017.00274}, pages = {124 -- 132}, year = {2017}, abstract = {In the context of back pain, great emphasis has been placed on the importance of trunk stability, especially in situations requiring compensation of repetitive, intense loading induced during high-performance activities, e.g., jumping or landing. This study aims to evaluate trunk muscle activity during drop jump in adolescent athletes with back pain (BP) compared to athletes without back pain (NBP). Eleven adolescent athletes suffering back pain (BP: m/f: n = 4/7; 15.9 +/- 1.3 y; 176 +/- 11 cm; 68 +/- 11 kg; 12.4 +/- 10.5 h/we training) and 11 matched athletes without back pain (NBP: m/f: n = 4/7; 15.5 +/- 1.3 y; 174 +/- 7 cm; 67 +/- 8 kg; 14.9 +/- 9.5 h/we training) were evaluated. Subjects conducted 3 drop jumps onto a force plate (ground reaction force). Bilateral 12-lead SEMG (surface Electromyography) was applied to assess trunk muscle activity. Ground contact time [ms], maximum vertical jump force [N], jump time [ms] and the jump performance index [m/s] were calculated for drop jumps. SEMG amplitudes (RMS: root mean square [\%]) for all 12 single muscles were normalized toMIVC (maximum isometric voluntary contraction) and analyzed in 4 time windows (100 ms pre- and 200 ms post-initial ground contact, 100 ms pre- and 200 ms post-landing) as outcome variables. In addition, muscles were grouped and analyzed in ventral and dorsal muscles, as well as straight and transverse trunk muscles. Drop jump ground reaction force variables did not differ between NBP and BP (p > 0.05). Mm obliquus externus and internus abdominis presented higher SEMG amplitudes (1.3-1.9-fold) for BP (p < 0.05). Mm rectus abdominis, erector spinae thoracic/lumbar and latissimus dorsi did not differ (p > 0.05). The muscle group analysis over the whole jumping cycle showed statistically significantly higher SEMG amplitudes for BP in the ventral (p = 0.031) and transverse muscles (p = 0.020) compared to NBP. Higher activity of transverse, but not straight, trunk muscles might indicate a specific compensation strategy to support trunk stability in athletes with back pain during drop jumps. Therefore, exercises favoring the transverse trunk muscles could be recommended for back pain treatment.}, language = {en} }