@misc{CamargoRiccardiRibeiroetal.2017, author = {Camargo, Rodolfo Gonzalez and Riccardi, Daniela Mendes dos Reis and Ribeiro, Henrique Quintas Teixeira and Carnevali Junior, Luiz Carlos and Matos-Neto, Emidio Marques de and Enjiu, Lucas and Neves, Rodrigo Xavier and Lima, Joanna Darck Carola Correia and Figuer{\^e}do, Raquel Galv{\~a}o and Alc{\^a}ntara, Paulo S{\´e}rgio Martins de and Maximiano, Linda and Otoch, Jos{\´e} and Batista Jr., Miguel Luiz and P{\"u}schel, Gerhard Paul and Seelaender, Marilia}, title = {NF-kappa Bp65 and expression of its pro-inflammatory target genes are upregulated in the subcutaneous adipose tissue of cachectic cancer patients}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400163}, pages = {15}, year = {2017}, abstract = {Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis. It secretes several cytokines capable of directly regulating intermediate metabolism. A common pathway in the regulation of the expression of pro-inflammatory cytokines in WAT is the activation of the nuclear transcription factor kappa-B (NF-κB). We have examined the gene expression of the subunits NF-κBp65 and NF-κBp50, as well as NF-κBp65 and NF-κBp50 binding, the gene expression of pro-inflammatory mediators under NF-κB control (IL-1β, IL-6, INF-γ, TNF-α, MCP-1), and its inhibitory protein, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IκB-α). The observational study involved 35 patients (control group, n = 12 and cancer group, n = 23, further divided into cachectic and non-cachectic). NF-κBp65 and its target genes expression (TNF-α, IL-1β, MCP-1 and IκB-α) were significantly higher in cachectic cancer patients. Moreover, NF-κBp65 gene expression correlated positively with the expression of its target genes. The results strongly suggest that the NF-κB pathway plays a role in the promotion of WAT inflammation during cachexia.}, language = {en} } @article{CamargodosReisRiccardiTeixeiraRibeiroetal.2015, author = {Camargo, Rodolfo Gonzalez and dos Reis Riccardi, Daniela Mendes and Teixeira Ribeiro, Henrique Quintas and Carnevali Junior, Luiz Carlos and de Matos-Neto, Emidio Marques and Enjiu, Lucas and Neves, Rodrigo Xavier and Carola Correia Lima, Joanna Darck and Figueredo, Raquel Galvao and Martins de Alcantara, Paulo Sergio and Maximiano, Linda and Otoch, Jose and Batista Jr., Miguel Luiz and P{\"u}schel, Gerhard Paul and Seelaender, Marilia}, title = {NF-kappa Bp65 and Expression of Its Pro-Inflammatory Target Genes Are Upregulated in the Subcutaneous Adipose Tissue of Cachectic Cancer Patients}, series = {Nutrients}, volume = {7}, journal = {Nutrients}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu7064465}, pages = {4465 -- 4479}, year = {2015}, abstract = {Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis. It secretes several cytokines capable of directly regulating intermediate metabolism. A common pathway in the regulation of the expression of pro-inflammatory cytokines in WAT is the activation of the nuclear transcription factor kappa-B (NF-B). We have examined the gene expression of the subunits NF-Bp65 and NF-Bp50, as well as NF-Bp65 and NF-Bp50 binding, the gene expression of pro-inflammatory mediators under NF-B control (IL-1, IL-6, INF-, TNF-, MCP-1), and its inhibitory protein, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IB-). The observational study involved 35 patients (control group, n = 12 and cancer group, n = 23, further divided into cachectic and non-cachectic). NF-Bp65 and its target genes expression (TNF-, IL-1, MCP-1 and IB-) were significantly higher in cachectic cancer patients. Moreover, NF-Bp65 gene expression correlated positively with the expression of its target genes. The results strongly suggest that the NF-B pathway plays a role in the promotion of WAT inflammation during cachexia.}, language = {en} } @article{PrietoShkilnyyRumplaschetal.2011, author = {Prieto, Susana and Shkilnyy, Andriy and Rumplasch, Claudia and Ribeiro, Artur and Javier Arias, F. and Carlos Rodriguez-Cabello, Jose and Taubert, Andreas}, title = {Biomimetic calcium phosphate mineralization with multifunctional elastin-like recombinamers}, series = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, volume = {12}, journal = {Biomacromolecules : an interdisciplinary journal focused at the interface of polymer science and the biological sciences}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1525-7797}, doi = {10.1021/bm200287c}, pages = {1480 -- 1486}, year = {2011}, abstract = {Biomimetic hybrid materials based on a polymeric and an inorganic component such as calcium phosphate are potentially useful for bone repair. The current study reports on a new approach toward biomimetic hybrid materials using a set of recombinamers (recombinant protein materials obtained from a synthetic gene) as crystallization additive for calcium phosphate. The recombinamers contain elements from elastin, an elastic structural protein, and statherin, a salivary protein. Via genetic engineering, the basic elastin sequence was modified with the SN(A)15 domain of statherin, whose interaction with calcium phosphate is well-established. These new materials retain the biocompatibility, "smart" nature, and desired mechanical behavior of the elastin-like recombinamer (ELR) family. Mineralization in simulated body fluid (SBF) in the presence of these recombinamers reveals surprising differences. Two of the polymers inhibit calcium phosphate deposition (although they contain the statherin segment). In contrast, the third polymer, which has a triblock structure, efficiently controls the calcium phosphate formation, yielding spherical hydroxyapatite (HAP) nanoparticles with diameters from 1 to 3 nm after 1 week in SBF at 37 degrees C. However, at lower temperatures, no precipitation is observed with any of the polymers. The data thus suggest that the molecular design of ELRs containing statherin segments and the selection of an appropriate polymer structure are key parameters to obtain functional materials for the development of intelligent systems for hard tissue engineering and subsequent in vivo applications.}, language = {en} } @article{KhudairMarcuzziNgetal.2022, author = {Khudair, Mohammed and Marcuzzi, Anna and Ng, Kwok and Tempest, Gavin Daniel and Bartoš, František and Peric, Ratko and Maier, Maximilian and Beccia, Flavia and Boccia, Stefania and Brandes, Mirko and Cardon, Greet and Carlin, Angela and Castagna, Carolina and Chaabene, Helmi and Chalkley, Anna and Ciaccioni, Simone and Cieślińska-Świder, Joanna and Čingienė, Vilma and Cortis, Cristina and Corvino, Chiara and de Geus, Eco J. C. and Di Baldassarre, Angela and Di Credico, Andrea and Drid, Patrik and Tarazaga, Rosa Ma Fern{\´a}ndez and Gall{\`e}, Francesca and S{\´a}nchez, Esther Garcia and Gebremariam, Mekdes and Ghinassi, Barbara and Goudas, Marios and Hayes, Grainne and Honorio, Samuel and Izzicupo, Pascal and Jahre, Henriette and Jelsma, Judith and Juric, Petra and Kolovelonis, Athanasios and Kongsvold, Atle and Kouidi, Evangelia and Mansergh, Fiona and Masanovic, Bojan and Mekonnen, Teferi and Mork, Paul Jarle and Murphy, Marie and O'Hara, Kelly and Torun, Ayse Ozbil and Palumbo, Federico and Popovic, Stevo and Prieske, Olaf and Puharic, Zrinka and Ribeiro, Jos{\´e} Carlos and Rumbold, Penny Louise Sheena and Sandu, Petru and Soric, Maroje and Stavnsbo, Mette and Syrmpas, Ioannis and van der Ploeg, Hidde P. and Van Hoye, Aur{\´e}lie and Vilela, Sofia and Woods, Catherine and Wunsch, Kathrin and Caprinica, Laura and MacDonncha, Ciaran and Ling, Fiona Chun Man}, title = {DE-PASS Best Evidence Statement (BESt): modifiable determinants of physical activity and sedentary behaviour in children and adolescents aged 5-19 years-a protocol for systematic review and meta-analysis}, series = {BMJ open}, volume = {12}, journal = {BMJ open}, number = {9}, publisher = {BMJ Publishing Group}, address = {London}, organization = {DE-PASS}, issn = {2044-6055}, doi = {10.1136/bmjopen-2021-059202}, pages = {8}, year = {2022}, abstract = {Introduction Physical activity among children and adolescents remains insufficient, despite the substantial efforts made by researchers and policymakers. Identifying and furthering our understanding of potential modifiable determinants of physical activity behaviour (PAB) and sedentary behaviour (SB) is crucial for the development of interventions that promote a shift from SB to PAB. The current protocol details the process through which a series of systematic literature reviews and meta-analyses (MAs) will be conducted to produce a best-evidence statement (BESt) and inform policymakers. The overall aim is to identify modifiable determinants that are associated with changes in PAB and SB in children and adolescents (aged 5-19 years) and to quantify their effect on, or association with, PAB/SB. Methods and analysis A search will be performed in MEDLINE, SportDiscus, Web of Science, PsychINFO and Cochrane Central Register of Controlled Trials. Randomised controlled trials (RCTs) and controlled trials (CTs) that investigate the effect of interventions on PAB/SB and longitudinal studies that investigate the associations between modifiable determinants and PAB/SB at multiple time points will be sought. Risk of bias assessments will be performed using adapted versions of Cochrane's RoB V.2.0 and ROBINS-I tools for RCTs and CTs, respectively, and an adapted version of the National Institute of Health's tool for longitudinal studies. Data will be synthesised narratively and, where possible, MAs will be performed using frequentist and Bayesian statistics. Modifiable determinants will be discussed considering the settings in which they were investigated and the PAB/SB measurement methods used. Ethics and dissemination No ethical approval is needed as no primary data will be collected. The findings will be disseminated in peer-reviewed publications and academic conferences where possible. The BESt will also be shared with policy makers within the DE-PASS consortium in the first instance. Systematic review registration CRD42021282874.}, language = {en} }