@article{HofmanHaywardHeimetal.2019, author = {Hofman, Maarten P. G. and Hayward, M. W. and Heim, M. and Marchand, P. and Rolandsen, C. M. and Mattisson, Jenny and Urbano, F. and Heurich, M. and Mysterud, A. and Melzheimer, J. and Morellet, N. and Voigt, Ulrich and Allen, B. L. and Gehr, Benedikt and Rouco Zufiaurre, Carlos and Ullmann, Wiebke and Holand, O. and Jorgensen, n H. and Steinheim, G. and Cagnacci, F. and Kroeschel, M. and Kaczensky, P. and Buuveibaatar, B. and Payne, J. C. and Palmegiani, I and Jerina, K. and Kjellander, P. and Johansson, O. and LaPoint, S. and Bayrakcismith, R. and Linnell, J. D. C. and Zaccaroni, M. and Jorge, M. L. S. and Oshima, J. E. F. and Songhurst, A. and Fischer, C. and Mc Bride, R. T. and Thompson, J. J. and Streif, S. and Sandfort, R. and Bonenfant, Christophe and Drouilly, M. and Klapproth, M. and Zinner, Dietmar and Yarnell, Richard and Stronza, A. and Wilmott, L. and Meisingset, E. and Thaker, Maria and Vanak, A. T. and Nicoloso, S. and Graeber, R. and Said, S. and Boudreau, M. R. and Devlin, A. and Hoogesteijn, R. and May-Junior, J. A. and Nifong, J. C. and Odden, J. and Quigley, H. B. and Tortato, F. and Parker, D. M. and Caso, A. and Perrine, J. and Tellaeche, C. and Zieba, F. and Zwijacz-Kozica, T. and Appel, C. L. and Axsom, I and Bean, W. T. and Cristescu, B. and Periquet, S. and Teichman, K. J. and Karpanty, S. and Licoppe, A. and Menges, V and Black, K. and Scheppers, Thomas L. and Schai-Braun, S. C. and Azevedo, F. C. and Lemos, F. G. and Payne, A. and Swanepoel, L. H. and Weckworth, B. and Berger, A. and Bertassoni, Alessandra and McCulloch, G. and Sustr, P. and Athreya, V and Bockmuhl, D. and Casaer, J. and Ekori, A. and Melovski, D. and Richard-Hansen, C. and van de Vyver, D. and Reyna-Hurtado, R. and Robardet, E. and Selva, N. and Sergiel, A. and Farhadinia, M. S. and Sunde, P. and Portas, R. and Ambarli, H{\"u}seyin and Berzins, R. and Kappeler, P. M. and Mann, G. K. and Pyritz, L. and Bissett, C. and Grant, T. and Steinmetz, R. and Swedell, Larissa and Welch, R. J. and Armenteras, D. and Bidder, O. R. and Gonzalez, T. M. and Rosenblatt, A. and Kachel, S. and Balkenhol, N.}, title = {Right on track?}, series = {PLoS one}, volume = {14}, journal = {PLoS one}, number = {5}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0216223}, pages = {26}, year = {2019}, abstract = {Satellite telemetry is an increasingly utilized technology in wildlife research, and current devices can track individual animal movements at unprecedented spatial and temporal resolutions. However, as we enter the golden age of satellite telemetry, we need an in-depth understanding of the main technological, species-specific and environmental factors that determine the success and failure of satellite tracking devices across species and habitats. Here, we assess the relative influence of such factors on the ability of satellite telemetry units to provide the expected amount and quality of data by analyzing data from over 3,000 devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the success rate in obtaining GPS fixes as well as in transferring these fixes to the user and we evaluate failure rates. Average fix success and data transfer rates were high and were generally better predicted by species and unit characteristics, while environmental characteristics influenced the variability of performance. However, 48\% of the unit deployments ended prematurely, half of them due to technical failure. Nonetheless, this study shows that the performance of satellite telemetry applications has shown improvements over time, and based on our findings, we provide further recommendations for both users and manufacturers.}, language = {en} } @article{TiegsCostelloIskenetal.2019, author = {Tiegs, Scott D. and Costello, David M. and Isken, Mark W. and Woodward, Guy and McIntyre, Peter B. and Gessner, Mark O. and Chauvet, Eric and Griffiths, Natalie A. and Flecker, Alex S. and Acuna, Vicenc and Albarino, Ricardo and Allen, Daniel C. and Alonso, Cecilia and Andino, Patricio and Arango, Clay and Aroviita, Jukka and Barbosa, Marcus V. M. and Barmuta, Leon A. and Baxter, Colden V. and Bell, Thomas D. C. and Bellinger, Brent and Boyero, Luz and Brown, Lee E. and Bruder, Andreas and Bruesewitz, Denise A. and Burdon, Francis J. and Callisto, Marcos and Canhoto, Cristina and Capps, Krista A. and Castillo, Maria M. and Clapcott, Joanne and Colas, Fanny and Colon-Gaud, Checo and Cornut, Julien and Crespo-Perez, Veronica and Cross, Wyatt F. and Culp, Joseph M. and Danger, Michael and Dangles, Olivier and de Eyto, Elvira and Derry, Alison M. and Diaz Villanueva, Veronica and Douglas, Michael M. and Elosegi, Arturo and Encalada, Andrea C. and Entrekin, Sally and Espinosa, Rodrigo and Ethaiya, Diana and Ferreira, Veronica and Ferriol, Carmen and Flanagan, Kyla M. and Fleituch, Tadeusz and Shah, Jennifer J. Follstad and Frainer, Andre and Friberg, Nikolai and Frost, Paul C. and Garcia, Erica A. and Lago, Liliana Garcia and Garcia Soto, Pavel Ernesto and Ghate, Sudeep and Giling, Darren P. and Gilmer, Alan and Goncalves, Jose Francisco and Gonzales, Rosario Karina and Graca, Manuel A. S. and Grace, Mike and Grossart, Hans-Peter and Guerold, Francois and Gulis, Vlad and Hepp, Luiz U. and Higgins, Scott and Hishi, Takuo and Huddart, Joseph and Hudson, John and Imberger, Samantha and Iniguez-Armijos, Carlos and Iwata, Tomoya and Janetski, David J. and Jennings, Eleanor and Kirkwood, Andrea E. and Koning, Aaron A. and Kosten, Sarian and Kuehn, Kevin A. and Laudon, Hjalmar and Leavitt, Peter R. and Lemes da Silva, Aurea L. and Leroux, Shawn J. and Leroy, Carri J. and Lisi, Peter J. and MacKenzie, Richard and Marcarelli, Amy M. and Masese, Frank O. and Mckie, Brendan G. and Oliveira Medeiros, Adriana and Meissner, Kristian and Milisa, Marko and Mishra, Shailendra and Miyake, Yo and Moerke, Ashley and Mombrikotb, Shorok and Mooney, Rob and Moulton, Tim and Muotka, Timo and Negishi, Junjiro N. and Neres-Lima, Vinicius and Nieminen, Mika L. and Nimptsch, Jorge and Ondruch, Jakub and Paavola, Riku and Pardo, Isabel and Patrick, Christopher J. and Peeters, Edwin T. H. M. and Pozo, Jesus and Pringle, Catherine and Prussian, Aaron and Quenta, Estefania and Quesada, Antonio and Reid, Brian and Richardson, John S. and Rigosi, Anna and Rincon, Jose and Risnoveanu, Geta and Robinson, Christopher T. and Rodriguez-Gallego, Lorena and Royer, Todd V. and Rusak, James A. and Santamans, Anna C. and Selmeczy, Geza B. and Simiyu, Gelas and Skuja, Agnija and Smykla, Jerzy and Sridhar, Kandikere R. and Sponseller, Ryan and Stoler, Aaron and Swan, Christopher M. and Szlag, David and Teixeira-de Mello, Franco and Tonkin, Jonathan D. and Uusheimo, Sari and Veach, Allison M. and Vilbaste, Sirje and Vought, Lena B. M. and Wang, Chiao-Ping and Webster, Jackson R. and Wilson, Paul B. and Woelfl, Stefan and Xenopoulos, Marguerite A. and Yates, Adam G. and Yoshimura, Chihiro and Yule, Catherine M. and Zhang, Yixin X. and Zwart, Jacob A.}, title = {Global patterns and drivers of ecosystem functioning in rivers and riparian zones}, series = {Science Advances}, volume = {5}, journal = {Science Advances}, number = {1}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {2375-2548}, doi = {10.1126/sciadv.aav0486}, pages = {8}, year = {2019}, abstract = {River ecosystems receive and process vast quantities of terrestrial organic carbon, the fate of which depends strongly on microbial activity. Variation in and controls of processing rates, however, are poorly characterized at the global scale. In response, we used a peer-sourced research network and a highly standardized carbon processing assay to conduct a global-scale field experiment in greater than 1000 river and riparian sites. We found that Earth's biomes have distinct carbon processing signatures. Slow processing is evident across latitudes, whereas rapid rates are restricted to lower latitudes. Both the mean rate and variability decline with latitude, suggesting temperature constraints toward the poles and greater roles for other environmental drivers (e.g., nutrient loading) toward the equator. These results and data set the stage for unprecedented "next-generation biomonitoring" by establishing baselines to help quantify environmental impacts to the functioning of ecosystems at a global scale.}, language = {en} }