@misc{GambaJonesTeasdaleetal.2014, author = {Gamba, Cristina and Jones, Eppie R. and Teasdale, Matthew D. and McLaughlin, Russell L. and Gonz{\´a}lez-Fortes, Gloria M. and Mattiangeli, Valeria and Dombor{\´o}czki, L{\´a}szl{\´o} and Kőv{\´a}ri, Ivett and Pap, Ildik{\´o} and Anders, Alexandra and Whittle, Alasdair and Dani, J{\´a}nos and Raczky, P{\´a}l and Higham, Thomas F. G. and Hofreiter, Michael and Bradley, Daniel G. and Pinhasi, Ron}, title = {Genome flux and stasis in a five millennium transect of European prehistory}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, volume = {5}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1332}, issn = {1866-8372}, doi = {10.25932/publishup-43799}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437999}, pages = {9}, year = {2014}, abstract = {The Great Hungarian Plain was a crossroads of cultural transformations that have shaped European prehistory. Here we analyse a 5,000-year transect of human genomes, sampled from petrous bones giving consistently excellent endogenous DNA yields, from 13 Hungarian Neolithic, Copper, Bronze and Iron Age burials including two to high (similar to 22x) and seven to similar to 1x coverage, to investigate the impact of these on Europe's genetic landscape. These data suggest genomic shifts with the advent of the Neolithic, Bronze and Iron Ages, with interleaved periods of genome stability. The earliest Neolithic context genome shows a European hunter-gatherer genetic signature and a restricted ancestral population size, suggesting direct contact between cultures after the arrival of the first farmers into Europe. The latest, Iron Age, sample reveals an eastern genomic influence concordant with introduced Steppe burial rites. We observe transition towards lighter pigmentation and surprisingly, no Neolithic presence of lactase persistence.}, language = {en} } @article{NitzeGrosseJonesetal.2017, author = {Nitze, Ingmar and Grosse, Guido and Jones, Benjamin M. and Arp, Christopher D. and Ulrich, Mathias and Fedorov, Alexander and Veremeeva, Alexandra}, title = {Landsat-Based Trend Analysis of Lake Dynamics across Northern Permafrost Regions}, series = {Remote sensing}, volume = {9}, journal = {Remote sensing}, publisher = {MDPI}, address = {Basel}, issn = {2072-4292}, doi = {10.3390/rs9070640}, pages = {28}, year = {2017}, abstract = {Lakes are a ubiquitous landscape feature in northern permafrost regions. They have a strong impact on carbon, energy and water fluxes and can be quite responsive to climate change. The monitoring of lake change in northern high latitudes, at a sufficiently accurate spatial and temporal resolution, is crucial for understanding the underlying processes driving lake change. To date, lake change studies in permafrost regions were based on a variety of different sources, image acquisition periods and single snapshots, and localized analysis, which hinders the comparison of different regions. Here, we present a methodology based on machine-learning based classification of robust trends of multi-spectral indices of Landsat data (TM, ETM+, OLI) and object-based lake detection, to analyze and compare the individual, local and regional lake dynamics of four different study sites (Alaska North Slope, Western Alaska, Central Yakutia, Kolyma Lowland) in the northern permafrost zone from 1999 to 2014. Regional patterns of lake area change on the Alaska North Slope (-0.69\%), Western Alaska (-2.82\%), and Kolyma Lowland (-0.51\%) largely include increases due to thermokarst lake expansion, but more dominant lake area losses due to catastrophic lake drainage events. In contrast, Central Yakutia showed a remarkable increase in lake area of 48.48\%, likely resulting from warmer and wetter climate conditions over the latter half of the study period. Within all study regions, variability in lake dynamics was associated with differences in permafrost characteristics, landscape position (i.e., upland vs. lowland), and surface geology. With the global availability of Landsat data and a consistent methodology for processing the input data derived from robust trends of multi-spectral indices, we demonstrate a transferability, scalability and consistency of lake change analysis within the northern permafrost region.}, language = {en} } @article{ReadKegelKluteetal.2013, author = {Read, Betsy A. and Kegel, Jessica and Klute, Mary J. and Kuo, Alan and Lefebvre, Stephane C. and Maumus, Florian and Mayer, Christoph and Miller, John and Monier, Adam and Salamov, Asaf and Young, Jeremy and Aguilar, Maria and Claverie, Jean-Michel and Frickenhaus, Stephan and Gonzalez, Karina and Herman, Emily K. and Lin, Yao-Cheng and Napier, Johnathan and Ogata, Hiroyuki and Sarno, Analissa F. and Shmutz, Jeremy and Schroeder, Declan and de Vargas, Colomban and Verret, Frederic and von Dassow, Peter and Valentin, Klaus and Van de Peer, Yves and Wheeler, Glen and Dacks, Joel B. and Delwiche, Charles F. and Dyhrman, Sonya T. and Gl{\"o}ckner, Gernot and John, Uwe and Richards, Thomas and Worden, Alexandra Z. and Zhang, Xiaoyu and Grigoriev, Igor V. and Allen, Andrew E. and Bidle, Kay and Borodovsky, M. and Bowler, C. and Brownlee, Colin and Cock, J. Mark and Elias, Marek and Gladyshev, Vadim N. and Groth, Marco and Guda, Chittibabu and Hadaegh, Ahmad and Iglesias-Rodriguez, Maria Debora and Jenkins, J. and Jones, Bethan M. and Lawson, Tracy and Leese, Florian and Lindquist, Erika and Lobanov, Alexei and Lomsadze, Alexandre and Malik, Shehre-Banoo and Marsh, Mary E. and Mackinder, Luke and Mock, Thomas and M{\"u}ller-R{\"o}ber, Bernd and Pagarete, Antonio and Parker, Micaela and Probert, Ian and Quesneville, Hadi and Raines, Christine and Rensing, Stefan A. and Riano-Pachon, Diego Mauricio and Richier, Sophie and Rokitta, Sebastian and Shiraiwa, Yoshihiro and Soanes, Darren M. and van der Giezen, Mark and Wahlund, Thomas M. and Williams, Bryony and Wilson, Willie and Wolfe, Gordon and Wurch, Louie L.}, title = {Pan genome of the phytoplankton Emiliania underpins its global distribution}, series = {Nature : the international weekly journal of science}, volume = {499}, journal = {Nature : the international weekly journal of science}, number = {7457}, publisher = {Nature Publ. Group}, address = {London}, organization = {Emiliania Huxleyi Annotation}, issn = {0028-0836}, doi = {10.1038/nature12221}, pages = {209 -- 213}, year = {2013}, abstract = {Coccolithophores have influenced the global climate for over 200 million years(1). These marine phytoplankton can account for 20 per cent of total carbon fixation in some systems(2). They form blooms that can occupy hundreds of thousands of square kilometres and are distinguished by their elegantly sculpted calcium carbonate exoskeletons (coccoliths), rendering them visible from space(3). Although coccolithophores export carbon in the form of organic matter and calcite to the sea floor, they also release CO2 in the calcification process. Hence, they have a complex influence on the carbon cycle, driving either CO2 production or uptake, sequestration and export to the deep ocean(4). Here we report the first haptophyte reference genome, from the coccolithophore Emiliania huxleyi strain CCMP1516, and sequences from 13 additional isolates. Our analyses reveal a pan genome (core genes plus genes distributed variably between strains) probably supported by an atypical complement of repetitive sequence in the genome. Comparisons across strains demonstrate that E. huxleyi, which has long been considered a single species, harbours extensive genome variability reflected in different metabolic repertoires. Genome variability within this species complex seems to underpin its capacity both to thrive in habitats ranging from the equator to the subarctic and to form large-scale episodic blooms under a wide variety of environmental conditions.}, language = {en} } @article{GambaJonesTeasdaleetal.2014, author = {Gamba, Cristina and Jones, Eppie R. and Teasdale, Matthew D. and McLaughlin, Russell L. and Gonz{\´a}lez-Fortes, Gloria M. and Mattiangeli, Valeria and Domboroczki, Laszlo and Kovari, Ivett and Pap, Ildiko and Anders, Alexandra and Whittle, Alasdair and Dani, Janos and Raczky, Pal and Higham, Thomas F. G. and Hofreiter, Michael and Bradley, Daniel G. and Pinhasi, Ron}, title = {Genome flux and stasis in a five millennium transect of European prehistory}, series = {Nature Communications}, volume = {5}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/ncomms6257}, pages = {9}, year = {2014}, abstract = {The Great Hungarian Plain was a crossroads of cultural transformations that have shaped European prehistory. Here we analyse a 5,000-year transect of human genomes, sampled from petrous bones giving consistently excellent endogenous DNA yields, from 13 Hungarian Neolithic, Copper, Bronze and Iron Age burials including two to high (similar to 22x) and seven to similar to 1x coverage, to investigate the impact of these on Europe's genetic landscape. These data suggest genomic shifts with the advent of the Neolithic, Bronze and Iron Ages, with interleaved periods of genome stability. The earliest Neolithic context genome shows a European hunter-gatherer genetic signature and a restricted ancestral population size, suggesting direct contact between cultures after the arrival of the first farmers into Europe. The latest, Iron Age, sample reveals an eastern genomic influence concordant with introduced Steppe burial rites. We observe transition towards lighter pigmentation and surprisingly, no Neolithic presence of lactase persistence.}, language = {en} } @article{UestuenSheikhGimenezIbanezetal.2016, author = {{\"U}st{\"u}n, Suayib and Sheikh, Arsheed and Gimenez-Ibanez, Selena and Jones, Alexandra and Ntoukakis, Vardis and B{\"o}rnke, Frederik}, title = {The Proteasome Acts as a Hub for Plant Immunity and Is Targeted by Pseudomonas Type III Effectors}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {172}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.16.00808}, pages = {1941 -- 1958}, year = {2016}, abstract = {Recent evidence suggests that the ubiquitin-proteasome system is involved in several aspects of plant immunity and that a range of plant pathogens subvert the ubiquitin-proteasome system to enhance their virulence. Here, we show that proteasome activity is strongly induced during basal defense in Arabidopsis (Arabidopsis thaliana). Mutant lines of the proteasome subunits RPT2a and RPN12a support increased bacterial growth of virulent Pseudomonas syringae pv tomato DC3000 (Pst) and Pseudomonas syringae pv maculicola ES4326. Both proteasome subunits are required for pathogen-associated molecular pattern-triggered immunity responses. Analysis of bacterial growth after a secondary infection of systemic leaves revealed that the establishment of systemic acquired resistance (SAR) is impaired in proteasome mutants, suggesting that the proteasome also plays an important role in defense priming and SAR. In addition, we show that Pst inhibits proteasome activity in a type III secretion-dependent manner. A screen for type III effector proteins from Pst for their ability to interfere with proteasome activity revealed HopM1, HopAO1, HopA1, and HopG1 as putative proteasome inhibitors. Biochemical characterization of HopM1 by mass spectrometry indicates that HopM1 interacts with several E3 ubiquitin ligases and proteasome subunits. This supports the hypothesis that HopM1 associates with the proteasome, leading to its inhibition. Thus, the proteasome is an essential component of pathogen-associated molecular pattern-triggered immunity and SAR, which is targeted by multiple bacterial effectors.}, language = {en} } @article{JonesGrosseFarquharsonetal.2022, author = {Jones, Benjamin M. and Grosse, Guido and Farquharson, Louise M. and Roy-L{\´e}veill{\´e}e, Pascale and Veremeeva, Alexandra and Kanevskiy, Mikhail Z. and Gaglioti, Benjamin and Breen, Amy L. and Parsekian, Andrew D. and Ulrich, Mathias and Hinkel, Kenneth M.}, title = {Lake and drained lake basin systems in lowland permafrost regions}, series = {Nature reviews earth and environment}, volume = {3}, journal = {Nature reviews earth and environment}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2662-138X}, doi = {10.1038/s43017-021-00238-9}, pages = {85 -- 98}, year = {2022}, abstract = {The formation, growth and drainage of lakes in Arctic and boreal lowland permafrost regions influence landscape and ecosystem processes. These lake and drained lake basin (L-DLB) systems occupy >20\% of the circumpolar Northern Hemisphere permafrost region and similar to 50\% of the area below 300 m above sea level. Climate change is causing drastic impacts to L-DLB systems, with implications for permafrost dynamics, ecosystem functioning, biogeochemical processes and human livelihoods in lowland permafrost regions. In this Review, we discuss how an increase in the number of lakes as a result of permafrost thaw and an intensifying hydrologic regime are not currently offsetting the land area gained through lake drainage, enhancing the dominance of drained lake basins (DLBs).The contemporary transition from lakes to DLBs decreases hydrologic storage, leads to permafrost aggradation, increases carbon sequestration and diversifies the shifting habitat mosaic in Arctic and boreal regions. However, further warming could inhibit permafrost aggradation in DLBs, disrupting the trajectory of important microtopographic controls on carbon fluxes and ecosystem processes in permafrost-region L-DLB systems. Further research is needed to understand the future dynamics of L-DLB systems to improve Earth system models, permafrost carbon feedback assessments, permafrost hydrology linkages, infrastructure development in permafrost regions and the well-being of northern socio-ecological systems.}, language = {en} }