@article{AbeysekaraArcherBenbowetal.2019, author = {Abeysekara, A. U. and Archer, A. and Benbow, Wystan and Bird, Ralph and Brill, A. and Brose, Robert and Buchovecky, M. and Calderon-Madera, D. and Christiansen, J. L. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Fernandez-Alonso, M. and Finley, J. P. and Fortson, Lucy and Furniss, Amy and Gent, A. and Giuri, C. and Gueta, O. and Hanna, David and Hassan, T. and Hervet, Oliver and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, Caitlin A. and Kaaret, P. and Kertzman, M. and Kieda, David and Krause, Maria and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, Gernot and Moriarty, P. and Mukherjee, Reshmi and Nievas-Rosillo, M. and Ong, R. A. and Pfrang, Konstantin Johannes and Pohl, Martin and Prado, R. R. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Ribeiro, D. and Richards, G. T. and Roache, E. and Rovero, A. C. and Sadeh, Iftach and Santander, M. and Sembroski, G. H. and Shahinyan, Karlen and Sushch, Iurii and Svraka, T. and Weinstein, A. and Wells, R. M. and Wilcox, Patrick and Wilhelm, Alina and Williams, David Arnold and Williamson, T. J. and Zitzer, B.}, title = {Measurement of the Extragalactic Background Light Spectral Energy Distribution with VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {885}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab4817}, pages = {8}, year = {2019}, abstract = {The extragalactic background light (EBL), a diffuse photon field in the optical and infrared range, is a record of radiative processes over the universe?s history. Spectral measurements of blazars at very high energies (>100 GeV) enable the reconstruction of the spectral energy distribution (SED) of the EBL, as the blazar spectra are modified by redshift- and energy-dependent interactions of the gamma-ray photons with the EBL. The spectra of 14 VERITAS-detected blazars are included in a new measurement of the EBL SED that is independent of EBL SED models. The resulting SED covers an EBL wavelength range of 0.56?56 ?m, and is in good agreement with lower limits obtained by assuming that the EBL is entirely due to radiation from cataloged galaxies.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fortson, L. and Furniss, A. and Gillanders, G. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Ong, R. A. and Otte, A. N. and Petrashyk, A. and Pohl, M. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Staszak, D. and Sushch, I. and Wakely, S. P. and Wells, R. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Williamson, T. J. and Zitzer, B.}, title = {Measurement of cosmic-ray electrons at TeV energies by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {6}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.062004}, pages = {7}, year = {2018}, abstract = {Cosmic-ray electrons and positrons (CREs) at GeV-TeV energies are a unique probe of our local Galactic neighborhood. CREs lose energy rapidly via synchrotron radiation and inverse-Compton scattering processes while propagating within the Galaxy, and these losses limit their propagation distance. For electrons with TeV energies, the limit is on the order of a kiloparsec. Within that distance, there are only a few known astrophysical objects capable of accelerating electrons to such high energies. It is also possible that the CREs are the products of the annihilation or decay of heavy dark matter (DM) particles. VERITAS, an array of imaging air Cherenkov telescopes in southern Arizona, is primarily utilized for gamma-ray astronomy but also simultaneously collects CREs during all observations. We describe our methods of identifying CREs in VERITAS data and present an energy spectrum, extending from 300 GeV to 5 TeV, obtained from approximately 300 hours of observations. A single power-law fit is ruled out in VERITAS data. We find that the spectrum of CREs is consistent with a broken power law, with a break energy at 710 +/- 40(stat) +/- 140(syst) GeV.}, language = {en} } @article{ArchambaultArcherBenbowetal.2017, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Bourbeau, E. and Brantseg, T. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Christiansen, J. L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Geringer-Sameth, A. and Griffin, S. and Grube, J. and H{\"u}tten, M. and Hakansson, N. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Hummensky, B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Koushiappas, S. and Krause, M. and Krennrich, F. and Lang, M. J. and Lin, T. T. Y. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Trepanier, S. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilcox, P. and Williams, D. A. and Zitzer, B.}, title = {Dark matter constraints from a joint analysis of dwarf Spheroidal galaxy observations with VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {95}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {8}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.95.082001}, pages = {14}, year = {2017}, abstract = {We present constraints on the annihilation cross section of weakly interacting massive particles dark matter based on the joint statistical analysis of four dwarf galaxies with VERITAS. These results are derived from an optimized photon weighting statistical technique that improves on standard imaging atmospheric Cherenkov telescope (IACT) analyses by utilizing the spectral and spatial properties of individual photon events. We report on the results of similar to 230 hours of observations of five dwarf galaxies and the joint statistical analysis of four of the dwarf galaxies. We find no evidence of gamma-ray emission from any individual dwarf nor in the joint analysis. The derived upper limit on the dark matter annihilation cross section from the joint analysis is 1.35 x 10(-23) cm(3) s(-1) at 1 TeV for the bottom quark (b (b) over bar) final state, 2.85 x 10(-24) cm(3) s(-1) at 1 TeV for the tau lepton (tau+tau(-)) final state and 1.32 x 10-25 cm(3) s(-1) at 1 TeV for the gauge boson (gamma gamma) final state.}, language = {en} } @article{AliuArchambaultArcheretal.2016, author = {Aliu, E. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Lang, M. J. and Loo, A. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Petrashyk, A. and Pohl, M. and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Chernyakova, M. and Roberts, M. S. E.}, title = {A SEARCH FOR VERY HIGH ENERGY GAMMA RAYS FROM THE MISSING LINK BINARY PULSAR J1023+0038 WITH VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {831}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/831/2/193}, pages = {7}, year = {2016}, abstract = {The binary millisecond radio pulsar PSR J1023+0038 exhibits many characteristics similar to the gamma-ray binary system PSR B1259-63/LS 2883, making it an ideal candidate for the study of high-energy nonthermal emission. It has been the subject of multiwavelength campaigns following the disappearance of the pulsed radio emission in 2013 June, which revealed the appearance of an accretion disk around the neutron star. We present the results of very high energy (VHE) gamma-ray observations carried out by the Very Energetic Radiation Imaging Telescope Array System before and after this change of state. Searches for steady and pulsed emission of both data sets yield no significant gamma-ray signal above 100 GeV, and upper limits are given for both a steady and pulsed gamma-ray flux. These upper limits are used to constrain the magnetic field strength in the shock region of the PSR J1023+0038 system. Assuming that VHE gamma rays are produced via an inverse Compton mechanism in the shock region, we constrain the shock magnetic field to be greater than similar to 2 G before the disappearance of the radio pulsar and greater than similar to 10 G afterward.}, language = {en} } @article{AliuArchambaultArcheretal.2015, author = {Aliu, E. and Archambault, S. and Archer, A. and Aune, T. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Bird, R. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Kansson, N. H. A. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lyutikov, M. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Manuela and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Williams, D. A. and Zajczyk, A. and Zitzer, B.}, title = {A search for pulsations from geminga above 100 GeV with veritas}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {800}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/800/1/61}, pages = {7}, year = {2015}, abstract = {We present the results of 71.6 hr of observations of the Geminga pulsar (PSR J0633+1746) with the VERITAS very-high-energy gamma-ray telescope array. Data taken with VERITAS between 2007 November and 2013 February were phase-folded using a Geminga pulsar timing solution derived from data recorded by the XMM-Newton and Fermi-LAT space telescopes. No significant pulsed emission above 100 GeV is observed, and we report upper limits at the 95\% confidence level on the integral flux above 135 GeV (spectral analysis threshold) of 4.0x10(-13) s(-1) cm(-2) and 1.7 x 10(-13) s(-1) cm(-2) for the two principal peaks in the emission profile. These upper limits, placed in context with phase-resolved spectral energy distributions determined from 5 yr of data from the Fermi-Large Area Telescope (LAT), constrain possible hardening of the Geminga pulsar emission spectra above similar to 50 GeV.}, language = {en} } @article{ArchambaultArcherBenbowetal.2016, author = {Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, W. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pichel, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B. and Fumagalli, M. and Prochaska, J. X.}, title = {UPPER LIMITS FROM FIVE YEARS OF BLAZAR OBSERVATIONS WITH THE VERITAS CHERENKOV TELESCOPES}, series = {The astronomical journal}, volume = {151}, journal = {The astronomical journal}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration}, issn = {0004-6256}, doi = {10.3847/0004-6256/151/6/142}, pages = {19}, year = {2016}, abstract = {Between the beginning of its full-scale scientific operations in 2007 and 2012, the VERITAS Cherenkov telescope array observed more than 130 blazars; of these, 26 were detected as very-high-energy (VHE; E > 100 GeV) gamma-ray sources. In this work, we present the analysis results of a sample of 114 undetected objects. The observations constitute a total live-time of similar to 570 hr. The sample includes several unidentified Fermi-Large Area Telescope (LAT) sources (located at high Galactic latitude) as well as all the sources from the second Fermi-LAT catalog that are contained within the field of view of the VERITAS observations. We have also performed optical spectroscopy measurements in order to estimate the redshift of some of these blazars that do not have spectroscopic distance estimates. We present new optical spectra from the Kast instrument on the Shane telescope at the Lick observatory for 18 blazars included in this work, which allowed for the successful measurement or constraint on the redshift of four of them. For each of the blazars included in our sample, we provide the flux upper limit in the VERITAS energy band. We also study the properties of the significance distributions and we present the result of a stacked analysis of the data set, which shows a 4s excess.}, language = {en} } @article{ArchambaultArcherBarnackaetal.2016, author = {Archambault, S. and Archer, A. and Barnacka, Anna and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and B{\"o}ttcher, Markus and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Godambe, S. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Hughes, G. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Kumar, S. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Nelson, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Sweeney, K. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Discovery of very high energy gamma rays from 1ES 1440+122}, series = {Monthly notices of the Royal Astronomical Society}, volume = {461}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1319}, pages = {202 -- 208}, year = {2016}, language = {en} } @article{ArchambaultArcherAuneetal.2016, author = {Archambault, S. and Archer, A. and Aune, T. and Barnacka, Anna and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Pandel, D. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {EXCEPTIONALLY BRIGHT TEV FLARES FROM THE BINARY LS I+61 degrees 303}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {817}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/817/1/L7}, pages = {6}, year = {2016}, abstract = {The TeV binary system LS I +61 degrees 303 is known for its regular, non-thermal emission pattern that traces the orbital period of the compact object in its 26.5 day orbit around its B0 Ve star companion. The system typically presents elevated TeV emission around apastron passage with flux levels between 5\% and 15\% of the steady flux from the Crab Nebula (> 300 GeV). In this article, VERITAS observations of LS I + 61 degrees. 303 taken in late 2014 are presented, during which bright TeV flares around apastron at flux levels peaking above 30\% of the Crab Nebula flux were detected. This is the brightest such activity from this source ever seen in the TeV regime. The strong outbursts have rise and fall times of less than a day. The short timescale of the flares, in conjunction with the observation of 10 TeV photons from LS I + 61 degrees 303 during the flares, provides constraints on the properties of the accelerator in the source.}, language = {en} } @article{AliuArcherAuneetal.2015, author = {Aliu, E. and Archer, A. and Aune, T. and Barnacka, Anna and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connolly, M. P. and Cui, Wei and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Kumar, S. and Lang, M. J. and Madhavan, A. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Nieto, Daniel and Ong, R. A. and Orr, M. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, Martin and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Veritas observations of the BL LAC OBJECT PG 1553+113}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {799}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.1088/0004-637X/799/1/7}, pages = {9}, year = {2015}, abstract = {We present results from VERITAS observations of the BL Lac object PG 1553+113 spanning the years 2010, 2011, and 2012. The time-averaged spectrum, measured between 160 and 560 GeV, is well described by a power law with a spectral index of 4.33 +/- 0.09. The time-averaged integral flux above 200 GeV measured for this period was (1.69 +/- 0.06) x 10(-11) photons cm(-2) s(-1), corresponding to 6.9\% of the Crab Nebula flux. We also present the combined gamma-ray spectrum from the Fermi Large Area Telescope and VERITAS covering an energy range from 100 MeV to 560 GeV. The data are well fit by a power law with an exponential cutoff at 101.9 +/- 3.2 GeV. The origin of the cutoff could be intrinsic to PG 1553+113 or be due to the gamma-ray opacity of our universe through pair production off the extragalactic background light (EBL). Given lower limits to the redshift of z > 0.395 based on optical/UV observations of PG 1553+113, the cutoff would be dominated by EBL absorption. Conversely, the small statistical uncertainties of the VERITAS energy spectrum have allowed us to provide a robust upper limit on the redshift of PG 1553+113 of z <= 0.62. A strongly elevated mean flux of (2.50 +/- 0.14) x10(-11) photons cm(-2) s(-1) (10.3\% of the Crab Nebula flux) was observed during 2012, with the daily flux reaching as high as (4.44 +/- 0.71) x10(-11) photons cm(-2) s(-1) (18.3\% of the Crab Nebula flux) on MJD 56048. The light curve measured during the 2012 observing season is marginally inconsistent with a steady flux, giving a chi(2) probability for a steady flux of 0.03\%.}, language = {en} } @article{AliuAuneBarnackaetal.2014, author = {Aliu, E. and Aune, T. and Barnacka, Anna and Beilicke, M. and Benbow, W. and Berger, K. and Biteau, Jonathan and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Connaughton, V. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Federici, Simone and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pohl, Martin and Popkow, A. and Prokoph, H. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vassiliev, V. V. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Welsing, R. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and McEnery, J. E. and Perkins, J. S. and Veres, P. and Zhu, S.}, title = {Constraints on very high energy emission from GRB 130427A}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {795}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/795/1/L3}, pages = {6}, year = {2014}, abstract = {Prompt emission from the very fluent and nearby (z = 0.34) gamma-ray burst GRB130427A was detected by several orbiting telescopes and by ground-based, wide-field-of-view optical transient monitors. Apart from the intensity and proximity of this GRB, it is exceptional due to the extremely long-lived high-energy (100 MeV to 100 GeV) gamma-ray emission, which was detected by the Large Area Telescope on the Fermi Gamma-Ray Space Telescope for similar to 70 ks after the initial burst. The persistent, hard-spectrum, high-energy emission suggests that the highest-energy gamma rays may have been produced via synchrotron self-Compton processes though there is also evidence that the high-energy emission may instead be an extension of the synchrotron spectrum. VERITAS, a ground-based imaging atmospheric Cherenkov telescope array, began follow-up observations of GRB130427A similar to 71 ks (similar to 20 hr) after the onset of the burst. The GRB was not detected with VERITAS; however, the high elevation of the observations, coupled with the low redshift of the GRB, make VERITAS a very sensitive probe of the emission from GRB130427A for E > 100 GeV. The non-detection and consequent upper limit derived place constraints on the synchrotron self-Compton model of high-energy gamma-ray emission from this burst.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Fegan, D. J. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Lin, T. T. Y. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Williams, D. A. and Zitzer, B.}, title = {A SEARCH FOR BRIEF OPTICAL FLASHES ASSOCIATED WITH THE SETI TARGET KIC 8462852}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {818}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8205/818/2/L33}, pages = {6}, year = {2016}, abstract = {The F-type star KIC. 8462852 has recently been identified as an exceptional target for search for extraterrestrial intelligence (SETI) observations. We describe an analysis methodology for optical SETI, which we have used to analyze nine hours of serendipitous archival observations of KIC. 8462852 made with the VERITAS gamma-ray observatory between 2009 and 2015. No evidence of pulsed optical beacons, above a pulse intensity at the Earth of approximately 1 photon m(-2), is found. We also discuss the potential use of imaging atmospheric Cherenkov telescope arrays in searching for extremely short duration optical transients in general.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2016, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Biteau, Jonathan and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Ciupik, L. and Connolly, M. P. and Cui, W. and Dickinson, H. J. and Dumm, J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortin, P. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Huetten, M. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Petrashyk, A. and Petry, D. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reyes, L. C. and Reynolds, P. T. and Reynolds, K. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vincent, S. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {VERITAS and multiwavelength observations of the BL Lacertae object 1ES 1741+196}, series = {Monthly notices of the Royal Astronomical Society}, volume = {459}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw664}, pages = {2550 -- 2557}, year = {2016}, abstract = {We present results from multiwavelength observations of the BL Lacertae object 1ES 1741 + 196, including results in the very high energy gamma-ray regime using the Very Energetic Radiation Imaging Telescope Array System (VERITAS). The VERITAS time-averaged spectrum, measured above 180 GeV, is well modelled by a power law with a spectral index of 2.7 +/- 0.7(stat) +/- 0.2(syst). The integral flux above 180 GeV is (3.9 +/- 0.8(stat) +/- 1.0(syst)) x 10(-8) m(-2) s(-1), corresponding to 1.6 per cent of the Crab nebula flux on average. The multiwavelength spectral energy distribution of the source suggests that 1ES 1741+196 is an extreme-high-frequency-peaked BL Lacertae object. The observations analysed in this paper extend over a period of six years, during which time no strong flares were observed in any band. This analysis is therefore one of the few characterizations of a blazar in a non-flaring state.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cerruti, M. and Connolly, M. P. and Cui, W. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hanna, D. and Hervet, O. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Zitzer, B.}, title = {Discovery of Very-high-energy Emission from RGB J2243+203 and Derivation of Its Redshift Upper Limit}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, volume = {233}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0067-0049}, doi = {10.3847/1538-4365/aa8d76}, pages = {1188 -- 1204}, year = {2017}, abstract = {Very-high-energy (VHE; > 100 GeV) gamma-ray emission from the blazar RGB J2243+203 was discovered with the VERITAS Cherenkov telescope array, during the period between 2014 December 21 and 24. The VERITAS energy spectrum from this source can be fitted by a power law with a photon index of 4.6 +/- 0.5, and a flux normalization at 0.15 TeV of (6.3 +/- 1.1) x 10(-10) cm(-2) s(-1) TeV-1. The integrated Fermi-LAT flux from 1 to 100 GeV during the VERITAS detection is (4.1 +/- 0.8) x 10(-8) cm(-2) s(-1), which is an order of magnitude larger than the four-year-averaged flux in the same energy range reported in the 3FGL catalog, (4.0 +/- 0.1 x 10(-9) cm(-2) s(-1)). The detection with VERITAS triggered observations in the X-ray band with the Swift-XRT. However, due to scheduling constraints Swift-XRT observations were performed 67 hr after the VERITAS detection, rather than simultaneously with the VERITAS observations. The observed X-ray energy spectrum between 2 and 10 keV can be fitted with a power law with a spectral index of 2.7 +/- 0.2, and the integrated photon flux in the same energy band is (3.6 +/- 0.6) x 10(-13) cm(-2) s(-1). EBL-model-dependent upper limits of the blazar redshift have been derived. Depending on the EBL model used, the upper limit varies in the range from z < 0.9 to z < 1.1.}, language = {en} } @article{ArcherBenbowBirdetal.2018, author = {Archer, A. and Benbow, W. and Bird, R. and Brose, Robert and Buchovecky, M. and Bugaev, V. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Hutten, M. and Johnson, C. A. and Kaaret, P. and Kelley-Hoskins, N. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Sadeh, I. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Wilcox, P. and Wilhelm, Alina and Williams, D. A. and Wissel, S. A. and Zitzer, B.}, title = {Measurement of the iron spectrum in cosmic rays by VERITAS}, series = {Physical review : D, Particles, fields, gravitation, and cosmology}, volume = {98}, journal = {Physical review : D, Particles, fields, gravitation, and cosmology}, number = {2}, publisher = {American Physical Society}, address = {College Park}, organization = {VERITAS Collaboration}, issn = {2470-0010}, doi = {10.1103/PhysRevD.98.022009}, pages = {15}, year = {2018}, abstract = {We present a new measurement of the energy spectrum of iron nuclei in cosmic rays from 20 TeV to 500 TeV; The measurement makes use of a template-based analysis method, which, for the first time, is applied to the energy reconstruction of iron-induced air showers recorded by the VERITAS array of imaging atmospheric Cherenkov telescopes. The event selection makes use of the direct Cherenkov light which is emitted by charged particles before the first interaction, as well as other parameters related to the shape of the recorded air shower images. The measured spectrum is well described by a power law dF/dE = f(0) center dot (E/E-0)(-gamma) over the full energy range, with gamma = 2.82 +/- 0.30(stat)(-0.27)(+0.24)(syst) and f(0) = (4.82 +/- 0.98(stat)(-2.70)(+2.12)(syst)) x 10(-7) m(-2) s(-1) TeV-1 sr(-1) at E-0 = 50 TeV, with no indication of a cutoff or spectral break. The measured differential flux is compatible with previous results, with improved statistical uncertainty at the highest energies.}, language = {en} } @article{ArcherBenbowBirdetal.2016, author = {Archer, A. and Benbow, W. and Bird, R. and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Ciupik, L. and Collins-Hughes, E. and Connolly, M. P. and Eisch, J. D. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Gyuk, G. and Hakansson, Nils and Hanna, D. and Holder, J. and Humensky, T. B. and Huetten, M. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and McArthur, S. and McCann, A. and Meagher, K. and Millis, J. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Ratliff, G. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Smith, A. W. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Vassiliev, V. V. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Zitzer, B. and Yusef-Zadeh, F.}, title = {TEV GAMMA-RAY OBSERVATIONS OF THE GALACTIC CENTER RIDGE BY VERITAS}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {821}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/0004-637X/821/2/129}, pages = {162 -- 167}, year = {2016}, abstract = {The Galactic Center ridge has been observed extensively in the past by both GeV and TeV gamma-ray instruments revealing a wealth of structure, including a diffuse component and the point sources G0.9+0.1 (a composite supernova remnant) and Sgr A* (believed to be associated with the supermassive black hole located at the center of our Galaxy). Previous very high energy (VHE) gamma-ray observations with the H.E.S.S.. experiment have also detected an extended TeV gamma-ray component along the Galactic plane in the >300 GeV gamma-ray regime. Here we report on observations of the Galactic Center ridge from 2010 to 2014 by the VERITAS telescope array in the >2 TeV energy range. From these observations we (1) provide improved measurements of the differential energy spectrum for Sgr A* in the >2 TeV gamma-ray regime, (2) provide a detection in the >2 TeV gamma-ray emission from the composite SNR G0.9+0.1 and an improved determination of its multi-TeV gamma-ray energy spectrum, and. (3) report on the detection of VER J1746-289, a localized enhancement of >2 TeV gamma-ray emission along the Galactic plane.}, language = {en} } @article{AllenArchambaultArcheretal.2017, author = {Allen, C. and Archambault, S. and Archer, A. and Benbow, W. and Bird, R. and Bourbeau, E. and Brose, Robert and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Cardenzana, J. V. and Cerruti, M. and Chen, Xuhui and Christiansen, J. L. and Connolly, M. P. and Cui, W. and Daniel, M. K. and Eisch, J. D. and Falcone, Abe and Feng, Q. and Fernandez-Alonso, M. and Finley, J. P. and Fleischhack, H. and Flinders, A. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Huetten, M. and Hakansson, N. and Hanna, D. and Hervet, O. and Holder, J. and Hughes, G. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kelley-Hoskins, N. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Petrashyk, A. and Pichel, A. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rovero, A. C. and Rulten, C. and Sadeh, I. and Santander, Marcos and Sembroski, G. H. and Shahinyan, K. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weinstein, A. and Wilhelm, Alina and Williams, D. A.}, title = {Very-High-Energy gamma-Ray Observations of the Blazar 1ES 2344+514 with VERITAS}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1756}, pages = {2117 -- 2123}, year = {2017}, abstract = {We present very-high-energy gamma-ray observations of the BL Lac object 1ES 2344+514 taken by the Very Energetic Radiation Imaging Telescope Array System between 2007 and 2015. 1ES 2344+514 is detected with a statistical significance above the background of 20.8 sigma in 47.2 h (livetime) of observations, making this the most comprehensive very-high-energy study of 1ES 2344+514 to date. Using these observations, the temporal properties of 1ES 2344+514 are studied on short and long times-scales. We fit a constant-flux model to nightly and seasonally binned light curves and apply a fractional variability test to determine the stability of the source on different time-scales. We reject the constant-flux model for the 2007-2008 and 2014-2015 nightly binned light curves and for the long-term seasonally binned light curve at the > 3 sigma level. The spectra of the time-averaged emission before and after correction for attenuation by the extragalactic background light are obtained. The observed time-averaged spectrum above 200 GeV is satisfactorily fitted (x(2)/NDF = 7.89/6) by a power-law function with an index Gamma = 2.46 +/- 0.06(stat) +/- 0.20(sys) and extends to at least 8 TeV. The extragalactic-backgroundlight-deabsorbed spectrum is adequately fit (x(2)/NDF = 6.73/6) by a power-law function with an index Gamma = 2.15 +/- 0.06(stat) +/- 0.20(sys) while an F-test indicates that the power law with an exponential cut-off function provides a marginally better fit (x(2)/NDF = 2.56/5) at the 2.1 sigma level. The source location is found to be consistent with the published radio location and its spatial extent is consistent with a point source.}, language = {en} } @article{AbeysekaraArchambaultArcheretal.2017, author = {Abeysekara, A. U. and Archambault, S. and Archer, A. and Benbow, Wystan and Bird, Ralph and Buchovecky, M. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, X. and Ciupik, L. and Cui, W. and Dickinson, H. J. and Eisch, J. D. and Errando, M. and Falcone, A. and Feng, Q. and Finley, J. P. and Fleischhack, H. and Fortson, L. and Furniss, A. and Gillanders, G. H. and Griffin, S. and Grube, J. and Hutten, M. and Hakansson, N. and Hanna, D. and Holder, J. and Humensky, T. B. and Johnson, C. A. and Kaaret, P. and Kar, P. and Kertzman, M. and Kieda, D. and Krause, M. and Krennrich, F. and Kumar, S. and Lang, M. J. and Maier, G. and McArthur, S. and McCann, A. and Meagher, K. and Moriarty, P. and Mukherjee, R. and Nguyen, T. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Pelassa, V. and Pohl, Martin and Popkow, A. and Pueschel, Elisa and Quinn, J. and Ragan, K. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rulten, C. and Santander, M. and Sembroski, G. H. and Shahinyan, K. and Staszak, D. and Telezhinsky, Igor O. and Tucci, J. V. and Tyler, J. and Wakely, S. P. and Weiner, O. M. and Weinstein, A. and Wilhelm, Alina and Williams, D. A. and Fegan, S. and Giebels, B. and Horan, D. and Berdyugin, A. and Kuan, J. and Lindfors, E. and Nilsson, K. and Oksanen, A. and Prokoph, H. and Reinthal, R. and Takalo, L. and Zefi, F.}, title = {A Luminous and Isolated Gamma-Ray Flare from the Blazar B2 1215+30}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {836}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration;Fermi-LAT Collaboration}, issn = {0004-637X}, doi = {10.3847/1538-4357/836/2/205}, pages = {6}, year = {2017}, abstract = {B2 1215+30 is a BL-Lac-type blazar that was first detected at TeV energies by the MAGIC atmospheric Cherenkov telescopes and subsequently confirmed by the Very Energetic Radiation Imaging Telescope Array System (VERITAS) observatory with data collected between 2009 and 2012. In 2014 February 08, VERITAS detected a large-amplitude flare from B2. 1215+30 during routine monitoring observations of the blazar 1ES. 1218+304, located in the same field of view. The TeV flux reached 2.4 times the Crab Nebula flux with a variability timescale of <3.6 hr. Multiwavelength observations with Fermi-LAT, Swift, and the Tuorla Observatory revealed a correlated high GeV flux state and no significant optical counterpart to the flare, with a spectral energy distribution where the gamma-ray luminosity exceeds the synchrotron luminosity. When interpreted in the framework of a onezone leptonic model, the observed emission implies a high degree of beaming, with Doppler factor delta > 10, and an electron population with spectral index p < 2.3.}, language = {en} } @article{NideverOlsenWalkeretal.2017, author = {Nidever, David L. and Olsen, Knut and Walker, Alistair R. and Katherina Vivas, A. and Blum, Robert D. and Kaleida, Catherine and Choi, Yumi and Conn, Blair C. and Gruendl, Robert A. and Bell, Eric F. and Besla, Gurtina and Munoz, Ricardo R. and Gallart, Carme and Martin, Nicolas F. and Olszewski, Edward W. and Saha, Abhijit and Monachesi, Antonela and Monelli, Matteo and de Boer, Thomas J. L. and Johnson, L. Clifton and Zaritsky, Dennis and Stringfellow, Guy S. and van der Marel, Roeland P. and Cioni, Maria-Rosa L. and Jin, Shoko and Majewski, Steven R. and Martinez-Delgado, David and Monteagudo, Lara and Noel, Noelia E. D. and Bernard, Edouard J. and Kunder, Andrea and Chu, You-Hua and Bell, Cameron P. M. and Santana, Felipe and Frechem, Joshua and Medina, Gustavo E. and Parkash, Vaishali and Seron Navarrete, J. C. and Hayes, Christian}, title = {SMASH: Survey of the MAgellanic Stellar History}, series = {The astronomical journal}, volume = {154}, journal = {The astronomical journal}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-6256}, doi = {10.3847/1538-3881/aa8d1c}, pages = {310 -- 326}, year = {2017}, abstract = {The Large and Small Magellanic Clouds are unique local laboratories for studying the formation and evolution of small galaxies in exquisite detail. The Survey of the MAgellanic Stellar History (SMASH) is an NOAO community Dark Energy Camera (DECam) survey of the Clouds mapping 480 deg2 (distributed over similar to 2400 square degrees at similar to 20\% filling factor) to similar to 24th. mag in ugriz. The primary goals of SMASH are to identify low surface brightness stellar populations associated with the stellar halos and tidal debris of the Clouds, and to derive spatially resolved star formation histories. Here, we present a summary of the survey, its data reduction, and a description of the first public Data Release (DR1). The SMASH DECam data have been reduced with a combination of the NOAO Community Pipeline, the PHOTRED automated point-spread-function photometry pipeline, and custom calibration software. The astrometric precision is similar to 15 mas and the accuracy is similar to 2 mas with respect to the Gaia reference frame. The photometric precision is similar to 0.5\%-0.7\% in griz and similar to 1\% in u with a calibration accuracy of similar to 1.3\% in all bands. The median 5s point source depths in ugriz are 23.9, 24.8, 24.5, 24.2, and 23.5 mag. The SMASH data have already been used to discover the Hydra II Milky Way satellite, the SMASH 1 old globular cluster likely associated with the LMC, and extended stellar populations around the LMC out to R. similar to. 18.4 kpc. SMASH DR1 contains measurements of similar to 100 million objects distributed in 61 fields. A prototype version of the NOAO Data Lab provides data access and exploration tools.}, language = {en} } @article{JonesArridgeCoatesetal.2009, author = {Jones, Geraint H. and Arridge, Christopher S. and Coates, Andrew J. and Lewis, Gethyn R. and Kanani, Sheila and Wellbrock, Anne and Young, David T. and Crary, Frank J. and Tokar, Robert L. and Wilson, R. J. and Hill, Thomas W. and Johnson, Robert E. and Mitchell, Donald G. and Schmidt, J{\"u}rgen and Kempf, Sascha and Beckmann, Uwe and Russell, Christopher T. and Jia, Y. D. and Dougherty, Michele K. and Waite, J. Hunter and Magee, Brian A.}, title = {Fine jet structure of electrically charged grains in Enceladus' plume}, issn = {0094-8276}, doi = {10.1029/2009gl038284}, year = {2009}, abstract = {By traversing the plume erupting from high southern latitudes on Saturn's moon Enceladus, Cassini orbiter instruments can directly sample the material therein. Cassini Plasma Spectrometer, CAPS, data show that a major plume component comprises previously-undetected particles of nanometer scales and larger that bridge the mass gap between previously observed gaseous species and solid icy grains. This population is electrically charged both negative and positive, indicating that subsurface triboelectric charging, i.e., contact electrification of condensed plume material may occur through mutual collisions within vents. The electric field of Saturn's magnetosphere controls the jets' morphologies, separating particles according to mass and charge. Fine-scale structuring of these particles' spatial distribution correlates with discrete plume jets' sources, and reveals locations of other possible active regions. The observed plume population likely forms a major component of high velocity nanometer particle streams detected outside Saturn's magnetosphere.}, language = {en} } @article{SokalJohnsonMasseyetal.2015, author = {Sokal, K. R. and Johnson, K. E. and Massey, P. and Indebetouw, R.}, title = {The importance of Wolf-Rayet ionization and feedback on super star cluster evolution}, series = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, journal = {Wolf-Rayet Stars : Proceedings of an International Workshop held in Potsdam, Germany, 1.-5. June 2015}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-88325}, pages = {337 -- 340}, year = {2015}, abstract = {The feedback from massive stars is important to super star cluster (SSC) evolution and the timescales on which it occurs. SSCs form embedded in thick material, and eventually, the cluster is cleared out and revealed at optical wavelengths - however, this transition is not well understood. We are investigating this critical SSC evolutionary transition with a multi-wavelength observational campaign. Although previously thought to appear after the cluster has fully removed embedding natal material, we have found that SSCs may host large populations of Wolf-Rayet stars. These evolved stars provide ionization and mechanical feedback that we hypothesize is the tipping point in the combined feedback processes that drive a SSC to emerge. Utilizing optical spectra obtained with the 4m Mayall Telescope at Kitt Peak National Observatory and the 6.5m MMT, we have compiled a sample of embedded SSCs that are likely undergoing this short-lived evolutionary phase and in which we confirm the presence of Wolf-Rayet stars. Early results suggest that WRs may accelerate the cluster emergence.}, language = {en} }