@article{BenduhnPiersimoniLondietal.2018, author = {Benduhn, Johannes and Piersimoni, Fortunato and Londi, Giacomo and Kirch, Anton and Widmer, Johannes and Koerner, Christian and Beljonne, David and Neher, Dieter and Spoltore, Donato and Vandewal, Koen}, title = {Impact of triplet excited states on the open-circuit voltage of organic solar cells}, series = {dvanced energy materials}, volume = {8}, journal = {dvanced energy materials}, number = {21}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.201800451}, pages = {7}, year = {2018}, abstract = {The best organic solar cells (OSCs) achieve comparable peak external quantum efficiencies and fill factors as conventional photovoltaic devices. However, their voltage losses are much higher, in particular those due to nonradiative recombination. To investigate the possible role of triplet states on the donor or acceptor materials in this process, model systems comprising Zn- and Cu-phthalocyanine (Pc), as well as fluorinated versions of these donors, combined with C-60 as acceptor are studied. Fluorination allows tuning the energy level alignment between the lowest energy triplet state (T-1) and the charge-transfer (CT) state, while the replacement of Zn by Cu as the central metal in the Pcs leads to a largely enhanced spin-orbit coupling. Only in the latter case, a substantial influence of the triplet state on the nonradiative voltage losses is observed. In contrast, it is found that for a large series of typical OSC materials, the relative energy level alignment between T-1 and the CT state does not substantially affect nonradiative voltage losses.}, language = {en} } @article{ShivhareErdmannHoermannetal.2018, author = {Shivhare, Rishi and Erdmann, Tim and Hoermann, Ulrich and Collado-Fregoso, Elisa and Zeiske, Stefan and Benduhn, Johannes and Ullbrich, Sascha and Huebner, Rene and Hambsch, Mike and Kiriy, Anton and Voit, Brigitte and Neher, Dieter and Vandewal, Koen and Mannsfeld, Stefan C. B.}, title = {Alkyl Branching Position in Diketopyrrolopyrrole Polymers}, series = {Chemistry of materials : a publication of the American Chemical Society}, volume = {30}, journal = {Chemistry of materials : a publication of the American Chemical Society}, number = {19}, publisher = {American Chemical Society}, address = {Washington}, issn = {0897-4756}, doi = {10.1021/acs.chemmater.8b02739}, pages = {6801 -- 6809}, year = {2018}, abstract = {Diketopyrrolopyrrole (DPP)-based donor acceptor copolymers have gained a significant amount of research interest in the organic electronics community because of their high charge carrier mobilities in organic field-effect transistors (OFETs) and their ability to harvest near-infrared (NIR) photons in solar cells. In this study, we have synthesized four DPP based donor-acceptor copolymers with variations in the donor unit and the branching point of the solubilizing alkyl chains (at the second or sixth carbon position). Grazing incidence wide-angle X-ray scattering (GIWAXS) results suggest that moving the branching point further away from the polymer backbone increases the tendency for aggregation and yields polymer phases with a higher degree of crystallinity (DoC). The polymers were blended with PC70BM and used as active layers in solar cells. A careful analysis of the energetics of the neat polymer and blend films reveals that the charge-transfer state energy (E-CT) of the blend films lies exceptionally close to the singlet energy of the donor (E-D*), indicating near zero electron transfer losses. The difference between the optical gap and open-circuit voltage (V-OC) is therefore determined to be due to rather high nonradiative 418 +/- 13 mV) and unavoidable radiative voltage losses (approximate to 255 +/- 8 mV). Even though the four materials have similar optical gaps, the short-circuit current density (J(SC)) covers a vast span from 7 to 18 mA cm(-2) for the best performing system. Using photoluminescence (PL) quenching and transient charge extraction techniques, we quantify geminate and nongeminate losses and find that fewer excitons reach the donor-acceptor interface in polymers with further away branching points due to larger aggregate sizes. In these material systems, the photogeneration is therefore mainly limited by exciton harvesting efficiency.}, language = {en} } @article{PiersimoniSchlesingerBenduhnetal.2015, author = {Piersimoni, Fortunato and Schlesinger, Raphael and Benduhn, Johannes and Spoltore, Donato and Reiter, Sina and Lange, Ilja and Koch, Norbert and Vandewal, Koen and Neher, Dieter}, title = {Charge Transfer Absorption and Emission at ZnO/Organic Interfaces}, series = {The journal of physical chemistry letters}, volume = {6}, journal = {The journal of physical chemistry letters}, number = {3}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz502657z}, pages = {500 -- 504}, year = {2015}, abstract = {We investigate hybrid charge transfer states (HCTS) at the planar interface between a-NPD and ZnO by spectrally resolved electroluminescence (EL) and external quantum efficiency (EQE) measurements. Radiative decay of HCTSs is proven by distinct emission peaks in the EL spectra of such bilayer devices in the NIR at energies well below the bulk a-NPD or ZnO emission. The EQE spectra display low energy contributions clearly red-shifted with respect to the a-NPD photocurrent and partially overlapping with the EL emission. Tuning of the energy gap between the ZnO conduction band and a-NPD HOMO level (E-int) was achieved by modifying the ZnO surface with self-assembled monolayers based on phosphonic acids. We find a linear dependence of the peak position of the NIR EL on E-int, which unambiguously attributes the origin of this emission to radiative recombination between an electron on the ZnO and a hole on a-NPD. In accordance with this interpretation, we find a strictly linear relation between the open-circuit voltage and the energy of the charge state for such hybrid organicinorganic interfaces.}, language = {en} } @article{VandewalBenduhnSchellhammeretal.2017, author = {Vandewal, Koen and Benduhn, Johannes and Schellhammer, Karl Sebastian and Vangerven, Tim and R{\"u}ckert, Janna E. and Piersimoni, Fortunato and Scholz, Reinhard and Zeika, Olaf and Fan, Yeli and Barlow, Stephen and Neher, Dieter and Marder, Seth R. and Manca, Jean and Spoltore, Donato and Cuniberti, Gianaurelio and Ortmann, Frank}, title = {Absorption Tails of Donor}, series = {Journal of the American Chemical Society}, volume = {139}, journal = {Journal of the American Chemical Society}, number = {4}, publisher = {American Chemical Society}, address = {Washington}, issn = {0002-7863}, doi = {10.1021/jacs.6b12857}, pages = {1699 -- 1704}, year = {2017}, abstract = {In disordered organic semiconductors, the transfer of a rather localized charge carrier from one site to another triggers a deformation of the molecular structure quantified by the intramolecular relaxation energy. A similar structural relaxation occurs upon population of intermolecular charge-transfer (CT) states formed at organic electron donor (D)-acceptor (A) interfaces. Weak CT absorption bands for D A complexes occur at photon energies below the optical gaps of both the donors and the C-60 acceptor as a result of optical transitions from the neutral ground state to the ionic CT state. In this work, we show that temperature-activated intramolecular vibrations of the ground state play a major role in determining the line shape of such CT absorption bands. This allows us to extract values for the relaxation energy related to the geometry change from neutral to ionic CT complexes. Experimental values for the relaxation energies of 20 D:C-60 CT complexes correlate with values calculated within density functional theory. These results provide an experimental method for determining the polaron relaxation energy in solid-state organic D-A blends and show the importance of a reduced relaxation energy, which we introduce to characterize thermally activated CT processes.}, language = {en} } @article{NikolisMischokSiegmundetal.2019, author = {Nikolis, Vasileios C. and Mischok, Andreas and Siegmund, Bernhard and Kublitski, Jonas and Jia, Xiangkun and Benduhn, Johannes and H{\"o}rmann, Ulrich and Neher, Dieter and Gather, Malte C. and Spoltore, Donato and Vandewal, Koen}, title = {Strong light-matter coupling for reduced photon energy losses in organic photovoltaics}, series = {Nature Communications}, volume = {10}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-019-11717-5}, pages = {8}, year = {2019}, abstract = {Strong light-matter coupling can re-arrange the exciton energies in organic semiconductors. Here, we exploit strong coupling by embedding a fullerene-free organic solar cell (OSC) photo-active layer into an optical microcavity, leading to the formation of polariton peaks and a red-shift of the optical gap. At the same time, the open-circuit voltage of the device remains unaffected. This leads to reduced photon energy losses for the low-energy polaritons and a steepening of the absorption edge. While strong coupling reduces the optical gap, the energy of the charge-transfer state is not affected for large driving force donor-acceptor systems. Interestingly, this implies that strong coupling can be exploited in OSCs to reduce the driving force for electron transfer, without chemical or microstructural modifications of the photoactive layer. Our work demonstrates that the processes determining voltage losses in OSCs can now be tuned, and reduced to unprecedented values, simply by manipulating the device architecture.}, language = {en} } @article{PoelkingBenduhnSpoltoreetal.2022, author = {Poelking, Carl and Benduhn, Johannes and Spoltore, Donato and Schwarze, Martin and Roland, Steffen and Piersimoni, Fortunato and Neher, Dieter and Leo, Karl and Vandewal, Koen and Andrienko, Denis}, title = {Open-circuit voltage of organic solar cells}, series = {Communications physics}, volume = {5}, journal = {Communications physics}, number = {1}, publisher = {Nature portfolio}, address = {Berlin}, issn = {2399-3650}, doi = {10.1038/s42005-022-01084-x}, pages = {7}, year = {2022}, abstract = {Organic photovoltaics (PV) is an energy-harvesting technology that offers many advantages, such as flexibility, low weight and cost, as well as environmentally benign materials and manufacturing techniques. Despite growth of power conversion efficiencies to around 19 \% in the last years, organic PVs still lag behind inorganic PV technologies, mainly due to high losses in open-circuit voltage. Understanding and improving open circuit voltage in organic solar cells is challenging, as it is controlled by the properties of a donor-acceptor interface where the optical excitations are separated into charge carriers. Here, we provide an electrostatic model of a rough donor-acceptor interface and test it experimentally on small molecule PV materials systems. The model provides concise relationships between the open-circuit voltage, photovoltaic gap, charge-transfer state energy, and interfacial morphology. In particular, we show that the electrostatic bias generated across the interface reduces the photovoltaic gap. This negative influence on open-circuit voltage can, however, be circumvented by adjusting the morphology of the donor-acceptor interface. Organic solar cells, despite their high power conversion efficiencies, suffer from open circuit voltage losses making them less appealing in terms of applications. Here, the authors, supported with experimental data on small molecule photovoltaic cells, relate open circuit voltage to photovoltaic gap, charge-transfer state energy, and donor-acceptor interfacial morphology.}, language = {en} } @article{PranavBenduhnNymanetal.2021, author = {Pranav, Manasi and Benduhn, Johannes and Nyman, Mathias and Hosseini, Seyed Mehrdad and Kublitski, Jonas and Shoaee, Safa and Neher, Dieter and Leo, Karl and Spoltore, Donato}, title = {Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells}, series = {ACS applied materials \& interfaces}, volume = {13}, journal = {ACS applied materials \& interfaces}, number = {10}, publisher = {American Chemical Society}, address = {Washington}, issn = {1944-8244}, doi = {10.1021/acsami.1c00049}, pages = {12603 -- 12609}, year = {2021}, abstract = {Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C-60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C-60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design.}, language = {en} } @article{LiBenduhnQiaoetal.2019, author = {Li, Tian-yi and Benduhn, Johannes and Qiao, Zhi and Liu, Yuan and Li, Yue and Shivhare, Rishi and Jaiser, Frank and Wang, Pei and Ma, Jie and Zeika, Olaf and Neher, Dieter and Mannsfeld, Stefan C. B. and Ma, Zaifei and Vandewal, Koen and Leo, Karl}, title = {Effect of H- and J-Aggregation on the Photophysical and Voltage Loss of Boron Dipyrromethene Small Molecules in Vacuum-Deposited Organic Solar Cells}, series = {The journal of physical chemistry letters}, volume = {10}, journal = {The journal of physical chemistry letters}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.9b01222}, pages = {2684 -- 2691}, year = {2019}, abstract = {An understanding of the factors limiting the open-circuit voltage (V-oc) and related photon energy loss mechanisms is critical to increase the power conversion efficiency (PCE) of small-molecule organic solar cells (OSCs), especially those with near-infrared (NIR) absorbers. In this work, two NIR boron dipyrromethene (BODIPY) molecules are characterized for application in planar (PHJ) and bulk (BHJ) heterojunction OSCs. When two H atoms are substituted by F atoms on the peripheral phenyl rings of the molecules, the molecular aggregation type in the thin film changes from the H-type to J-type. For PHJ devices, the nonradiative voltage loss of 0.35 V in the J-aggregated BODIPY is lower than that of 0.49 V in the H-aggregated device. In BHJ devices with a nonradiative voltage loss of 0.35 V, a PCE of 5.5\% is achieved with an external quantum efficiency (EQE) maximum of 68\% at 700 nm.}, language = {en} } @article{FangHolzmuellerMatulaitisetal.2016, author = {Fang, Lijia and Holzmueller, Felix and Matulaitis, Tomas and Baasner, Anne and Hauenstein, Christoph and Benduhn, Johannes and Schwarze, Martin and Petrich, Annett and Piersimoni, Fortunato and Scholz, Reinhard and Zeika, Olaf and Koerner, Christian and Neher, Dieter and Vandewal, Koen and Leo, Karl}, title = {Fluorine-containing low-energy-gap organic dyes with low voltage losses for organic solar cells}, series = {Synthetic metals : the journal of electronic polymers and electronic molecular materials}, volume = {222}, journal = {Synthetic metals : the journal of electronic polymers and electronic molecular materials}, publisher = {Elsevier}, address = {Lausanne}, issn = {0379-6779}, doi = {10.1016/j.synthmet.2016.10.025}, pages = {232 -- 239}, year = {2016}, abstract = {Fluorine-containing donor molecules TFTF, CNTF and PRTF are designed and isomer selectively synthesized for application in vacuum-deposited organic solar cells. These molecules comprise a donor acceptor molecular architecture incorporating thiophene and benzothiadiazole derivatives as the electron-donating and electron-withdrawing moieties, respectively. As opposed to previously reported materials from this class, PRTF can be purified by vacuum sublimation at moderate to high yields because of its higher volatility and better stabilization due to a stronger intramolecular hydrogen bond, as compared to TFTF and CNTF. The UV-vis absorption spectra of the three donors show an intense broadband absorption between 500 nm and 800 nm with, similar positions of their frontier energy levels. The photophysical properties of the three donor molecules are thoroughly tested and optimized in bulk heterojunction solar cells with C-60 as acceptor. PRTF shows the best performance, yielding power conversion efficiencies of up to 3.8\%. Moreover, the voltage loss for the PRTF device due to the non radiative recombination of free charge carriers is exceptionally low (0.26 V) as compared to typical values for organic solar cells (>0.34V). (C) 2016 Published by Elsevier B.V.}, language = {en} } @article{UllbrichBenduhnJiaetal.2019, author = {Ullbrich, Sascha and Benduhn, Johannes and Jia, Xiangkun and Nikolis, Vasileios C. and Tvingstedt, Kristofer and Piersimoni, Fortunato and Roland, Steffen and Liu, Yuan and Wu, Jinhan and Fischer, Axel and Neher, Dieter and Reineke, Sebastian and Spoltore, Donato and Vandewal, Koen}, title = {Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses}, series = {Nature materials}, volume = {18}, journal = {Nature materials}, number = {5}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/s41563-019-0324-5}, pages = {459 -- 464}, year = {2019}, abstract = {Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes(1,2). Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001\% range(3,4). In contrast, the electroluminescence external quantum yield reaches up to 16\% in D-A-based organic light-emitting diodes(5-7). Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties of charge-transfer states in organic optoelectronic devices and foster the use of organic D-A blends in energy conversion applications involving visible and ultraviolet photons(8-11).}, language = {en} }