@article{AndorfMeyerSelbigetal.2012, author = {Andorf, Sandra and Meyer, Rhonda C. and Selbig, Joachim and Altmann, Thomas and Repsilber, Dirk}, title = {Integration of a systems biological network analysis and QTL results for biomass heterosis in arabidopsis thaliana}, series = {PLoS one}, volume = {7}, journal = {PLoS one}, number = {11}, publisher = {PLoS}, address = {San Fransisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0049951}, pages = {10}, year = {2012}, abstract = {To contribute to a further insight into heterosis we applied an integrative analysis to a systems biological network approach and a quantitative genetics analysis towards biomass heterosis in early Arabidopsis thaliana development. The study was performed on the parental accessions C24 and Col-0 and the reciprocal crosses. In an over-representation analysis it was tested if the overlap between the resulting gene lists of the two approaches is significantly larger than expected by chance. Top ranked genes in the results list of the systems biological analysis were significantly over-represented in the heterotic QTL candidate regions for either hybrid as well as regarding mid-parent and best-parent heterosis. This suggests that not only a few but rather several genes that influence biomass heterosis are located within each heterotic QTL region. Furthermore, the overlapping resulting genes of the two integrated approaches were particularly enriched in biomass related pathways. A chromosome-wise over-representation analysis gave rise to the hypothesis that chromosomes number 2 and 4 probably carry a majority of the genes involved in biomass heterosis in the early development of Arabidopsis thaliana.}, language = {en} } @article{BaslerEbenhoehSelbigetal.2011, author = {Basler, Georg and Ebenhoeh, Oliver and Selbig, Joachim and Nikoloski, Zoran}, title = {Mass-balanced randomization of metabolic networks}, series = {Bioinformatics}, volume = {27}, journal = {Bioinformatics}, number = {10}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btr145}, pages = {1397 -- 1403}, year = {2011}, abstract = {Motivation: Network-centered studies in systems biology attempt to integrate the topological properties of biological networks with experimental data in order to make predictions and posit hypotheses. For any topology-based prediction, it is necessary to first assess the significance of the analyzed property in a biologically meaningful context. Therefore, devising network null models, carefully tailored to the topological and biochemical constraints imposed on the network, remains an important computational problem. Results: We first review the shortcomings of the existing generic sampling scheme-switch randomization-and explain its unsuitability for application to metabolic networks. We then devise a novel polynomial-time algorithm for randomizing metabolic networks under the (bio)chemical constraint of mass balance. The tractability of our method follows from the concept of mass equivalence classes, defined on the representation of compounds in the vector space over chemical elements. We finally demonstrate the uniformity of the proposed method on seven genome-scale metabolic networks, and empirically validate the theoretical findings. The proposed method allows a biologically meaningful estimation of significance for metabolic network properties.}, language = {en} } @article{BaslerGrimbsEbenhoehetal.2012, author = {Basler, Georg and Grimbs, Sergio and Ebenh{\"o}h, Oliver and Selbig, Joachim and Nikoloski, Zoran}, title = {Evolutionary significance of metabolic network properties}, series = {Interface : journal of the Royal Society}, volume = {9}, journal = {Interface : journal of the Royal Society}, number = {71}, publisher = {Royal Society}, address = {London}, issn = {1742-5689}, doi = {10.1098/rsif.2011.0652}, pages = {1168 -- 1176}, year = {2012}, abstract = {Complex networks have been successfully employed to represent different levels of biological systems, ranging from gene regulation to protein-protein interactions and metabolism. Network-based research has mainly focused on identifying unifying structural properties, such as small average path length, large clustering coefficient, heavy-tail degree distribution and hierarchical organization, viewed as requirements for efficient and robust system architectures. However, for biological networks, it is unclear to what extent these properties reflect the evolutionary history of the represented systems. Here, we show that the salient structural properties of six metabolic networks from all kingdoms of life may be inherently related to the evolution and functional organization of metabolism by employing network randomization under mass balance constraints. Contrary to the results from the common Markov-chain switching algorithm, our findings suggest the evolutionary importance of the small-world hypothesis as a fundamental design principle of complex networks. The approach may help us to determine the biologically meaningful properties that result from evolutionary pressure imposed on metabolism, such as the global impact of local reaction knockouts. Moreover, the approach can be applied to test to what extent novel structural properties can be used to draw biologically meaningful hypothesis or predictions from structure alone.}, language = {en} } @article{BeerenwinkelSingLengaueretal.2005, author = {Beerenwinkel, Niko and Sing, Tobias and Lengauer, Thomas and Rahnenfuhrer, Joerg and Roomp, Kirsten and Savenkov, Igor and Fischer, Roman and Hoffmann, Daniel and Selbig, Joachim and Korn, Klaus and Walter, Hauke and Berg, Thomas and Braun, Patrick and Faetkenheuer, Gerd and Oette, Mark and Rockstroh, Juergen and Kupfer, Bernd and Kaiser, Rolf and Daeumer, Martin}, title = {Computational methods for the design of effective therapies against drug resistant HIV strains}, year = {2005}, abstract = {The development of drug resistance is a major obstacle to successful treatment of HIV infection. The extraordinary replication dynamics of HIV facilitates its escape from selective pressure exerted by the human immune system and by combination drug therapy. We have developed several computational methods whose combined use can support the design of optimal antiretroviral therapies based on viral genomic data}, language = {en} } @article{BordagKlieJuerchottetal.2015, author = {Bordag, Natalie and Klie, Sebastian and J{\"u}rchott, Kathrin and Vierheller, Janine and Schiewe, Hajo and Albrecht, Valerie and Tonn, J{\"o}rg-Christian and Schwartz, Christoph and Schichor, Christian and Selbig, Joachim}, title = {Glucocorticoid (dexamethasone)-induced metabolome changes in healthy males suggest prediction of response and side effects}, series = {Scientific reports}, volume = {5}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep15954}, pages = {12}, year = {2015}, abstract = {Glucocorticoids are indispensable anti-inflammatory and decongestant drugs with high prevalence of use at (similar to)0.9\% of the adult population. Better holistic insights into glucocorticoid-induced changes are crucial for effective use as concurrent medication and management of adverse effects. The profiles of 214 metabolites from plasma of 20 male healthy volunteers were recorded prior to and after ingestion of a single dose of 4 mg dexamethasone (+20 mg pantoprazole). Samples were drawn at three predefined time points per day: seven untreated (day 1 midday - day 3 midday) and four treated (day 3 evening - day 4 evening) per volunteer. Statistical analysis revealed tremendous impact of dexamethasone on the metabolome with 150 of 214 metabolites being significantly deregulated on at least one time point after treatment (ANOVA, Benjamini-Hochberg corrected, q < 0.05). Inter-person variability was high and remained uninfluenced by treatment. The clearly visible circadian rhythm prior to treatment was almost completely suppressed and deregulated by dexamethasone. The results draw a holistic picture of the severe metabolic deregulation induced by single-dose, short-term glucocorticoid application. The observed metabolic changes suggest a potential for early detection of severe side effects, raising hope for personalized early countermeasures increasing quality of life and reducing health care costs.}, language = {en} } @article{BulikGrimbsHuthmacheretal.2009, author = {Bulik, Sascha and Grimbs, Sergio and Huthmacher, Carola and Selbig, Joachim and Holzhutter, Hermann G.}, title = {Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws : a promising method for speeding up the kinetic modelling of complex metabolic networks}, issn = {1742-464X}, doi = {10.1111/j.1742-4658.2008.06784.x}, year = {2009}, abstract = {Kinetic modelling of complex metabolic networks - a central goal of computational systems biology - is currently hampered by the lack of reliable rate equations for the majority of the underlying biochemical reactions and membrane transporters. On the basis of biochemically substantiated evidence that metabolic control is exerted by a narrow set of key regulatory enzymes, we propose here a hybrid modelling approach in which only the central regulatory enzymes are described by detailed mechanistic rate equations, and the majority of enzymes are approximated by simplified (nonmechanistic) rate equations (e.g. mass action, LinLog, Michaelis-Menten and power law) capturing only a few basic kinetic features and hence containing only a small number of parameters to be experimentally determined. To check the reliability of this approach, we have applied it to two different metabolic networks, the energy and redox metabolism of red blood cells, and the purine metabolism of hepatocytes, using in both cases available comprehensive mechanistic models as reference standards. Identification of the central regulatory enzymes was performed by employing only information on network topology and the metabolic data for a single reference state of the network [Grimbs S, Selbig J, Bulik S, Holzhutter HG \& Steuer R (2007) Mol Syst Biol3, 146, doi:10.1038/msb4100186]. Calculations of stationary and temporary states under various physiological challenges demonstrate the good performance of the hybrid models. We propose the hybrid modelling approach as a means to speed up the development of reliable kinetic models for complex metabolic networks.}, language = {en} } @article{CatchpolePlatzerWeikertetal.2011, author = {Catchpole, Gareth and Platzer, Alexander and Weikert, Cornelia and Kempkensteffen, Carsten and Johannsen, Manfred and Krause, Hans and Jung, Klaus and Miller, Kurt and Willmitzer, Lothar and Selbig, Joachim and Weikert, Steffen}, title = {Metabolic profiling reveals key metabolic features of renal cell carcinoma}, series = {Journal of cellular and molecular medicine : a journal of translational medicine}, volume = {15}, journal = {Journal of cellular and molecular medicine : a journal of translational medicine}, number = {1}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {1582-1838}, doi = {10.1111/j.1582-4934.2009.00939.x}, pages = {109 -- 118}, year = {2011}, abstract = {Recent evidence suggests that metabolic changes play a pivotal role in the biology of cancer and in particular renal cell carcinoma (RCC). Here, a global metabolite profiling approach was applied to characterize the metabolite pool of RCC and normal renal tissue. Advanced decision tree models were applied to characterize the metabolic signature of RCC and to explore features of metastasized tumours. The findings were validated in a second independent dataset. Vitamin E derivates and metabolites of glucose, fatty acid, and inositol phosphate metabolism determined the metabolic profile of RCC. alpha-tocopherol, hippuric acid, myoinositol, fructose-1-phosphate and glucose-1-phosphate contributed most to the tumour/normal discrimination and all showed pronounced concentration changes in RCC. The identified metabolic profile was characterized by a low recognition error of only 5\% for tumour versus normal samples. Data on metastasized tumours suggested a key role for metabolic pathways involving arachidonic acid, free fatty acids, proline, uracil and the tricarboxylic acid cycle. These results illustrate the potential of mass spectroscopy based metabolomics in conjunction with sophisticated data analysis methods to uncover the metabolic phenotype of cancer. Differentially regulated metabolites, such as vitamin E compounds, hippuric acid and myoinositol, provide leads for the characterization of novel pathways in RCC.}, language = {en} } @article{ChildsGrimbsSelbig2015, author = {Childs, Dorothee and Grimbs, Sergio and Selbig, Joachim}, title = {Refined elasticity sampling for Monte Carlo-based identification of stabilizing network patterns}, series = {Bioinformatics}, volume = {31}, journal = {Bioinformatics}, number = {12}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {1367-4803}, doi = {10.1093/bioinformatics/btv243}, pages = {214 -- 220}, year = {2015}, abstract = {Motivation: Structural kinetic modelling (SKM) is a framework to analyse whether a metabolic steady state remains stable under perturbation, without requiring detailed knowledge about individual rate equations. It provides a representation of the system's Jacobian matrix that depends solely on the network structure, steady state measurements, and the elasticities at the steady state. For a measured steady state, stability criteria can be derived by generating a large number of SKMs with randomly sampled elasticities and evaluating the resulting Jacobian matrices. The elasticity space can be analysed statistically in order to detect network positions that contribute significantly to the perturbation response. Here, we extend this approach by examining the kinetic feasibility of the elasticity combinations created during Monte Carlo sampling. Results: Using a set of small example systems, we show that the majority of sampled SKMs would yield negative kinetic parameters if they were translated back into kinetic models. To overcome this problem, a simple criterion is formulated that mitigates such infeasible models. After evaluating the small example pathways, the methodology was used to study two steady states of the neuronal TCA cycle and the intrinsic mechanisms responsible for their stability or instability. The findings of the statistical elasticity analysis confirm that several elasticities are jointly coordinated to control stability and that the main source for potential instabilities are mutations in the enzyme alpha-ketoglutarate dehydrogenase.}, language = {en} } @article{CordesKaiserSelbig2006, author = {Cordes, Frank and Kaiser, Rolf and Selbig, Joachim}, title = {Bioinformatics approach to predicting HIV drug resistance}, issn = {1473-7159}, doi = {10.1586/14737159.6.2.207}, year = {2006}, abstract = {The emergence of drug resistance remains one of the most challenging issues in the treatment of HIV-1 infection. The extreme replication dynamics of HIV facilitates its escape from the selective pressure exerted by the human immune system and by the applied combination drug therapy. This article reviews computational methods whose combined use can support the design of optimal antiretroviral therapies based on viral genotypic and phenotypic data. Genotypic assays are based on the analysis of mutations associated with reduced drug susceptibility, but are difficult to interpret due to the numerous mutations and mutational patterns that confer drug resistance. Phenotypic resistance or susceptibility can be experimentally evaluated by measuring the inhibition of the viral replication in cell culture assays. However, this procedure is expensive and time consuming}, language = {en} } @article{DaubSteuerSelbigetal.2004, author = {Daub, Carsten O. and Steuer, Ralf and Selbig, Joachim and Kloska, Sebastian}, title = {Estimating mutual information using B-spline functions : an improved similarity measure for analysing gene expression data}, issn = {1471-2105}, year = {2004}, abstract = {Background: The information theoretic concept of mutual information provides a general framework to evaluate dependencies between variables. In the context of the clustering of genes with similar patterns of expression it has been suggested as a general quantity of similarity to extend commonly used linear measures. Since mutual information is defined in terms of discrete variables, its application to continuous data requires the use of binning procedures, which can lead to significant numerical errors for datasets of small or moderate size. Results: In this work, we propose a method for the numerical estimation of mutual information from continuous data. We investigate the characteristic properties arising from the application of our algorithm and show that our approach outperforms commonly used algorithms: The significance, as a measure of the power of distinction from random correlation, is significantly increased. This concept is subsequently illustrated on two large-scale gene expression datasets and the results are compared to those obtained using other similarity measures. A C++ source code of our algorithm is available for non- commercial use from kloska@scienion.de upon request. Conclusion: The utilisation of mutual information as similarity measure enables the detection of non-linear correlations in gene expression datasets. Frequently applied linear correlation measures, which are often used on an ad-hoc basis without further justification, are thereby extended}, language = {en} }