@article{KubinKernGuletal.2017, author = {Kubin, Markus and Kern, Jan and Gul, Sheraz and Kroll, Thomas and Chatterjee, Ruchira and Loechel, Heike and Fuller, Franklin D. and Sierra, Raymond G. and Quevedo, Wilson and Weniger, Christian and Rehanek, Jens and Firsov, Anatoly and Laksmono, Hartawan and Weninger, Clemens and Alonso-Mori, Roberto and Nordlund, Dennis L. and Lassalle-Kaiser, Benedikt and Glownia, James M. and Krzywinski, Jacek and Moeller, Stefan and Turner, Joshua J. and Minitti, Michael P. and Dakovski, Georgi L. and Koroidov, Sergey and Kawde, Anurag and Kanady, Jacob S. and Tsui, Emily Y. and Suseno, Sandy and Han, Zhiji and Hill, Ethan and Taguchi, Taketo and Borovik, Andrew S. and Agapie, Theodor and Messinger, Johannes and Erko, Alexei and F{\"o}hlisch, Alexander and Bergmann, Uwe and Mitzner, Rolf and Yachandra, Vittal K. and Yano, Junko and Wernet, Philippe}, title = {Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers}, series = {Structural dynamics}, volume = {4}, journal = {Structural dynamics}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4986627}, pages = {16}, year = {2017}, abstract = {X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn similar to 6-15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. (C) 2017 Author(s).}, language = {en} } @article{KrollKernKubinetal.2016, author = {Kroll, Thomas and Kern, Jan and Kubin, Markus and Ratner, Daniel and Gul, Sheraz and Fuller, Franklin D. and L{\"o}chel, Heike and Krzywinski, Jacek and Lutman, Alberto and Ding, Yuantao and Dakovski, Georgi L. and Moeller, Stefan and Turner, Joshua J. and Alonso-Mori, Roberto and Nordlund, Dennis L. and Rehanek, Jens and Weniger, Christian and Firsov, Alexander and Brzhezinskaya, Maria and Chatterjee, Ruchira and Lassalle-Kaiser, Benedikt and Sierra, Raymond G. and Laksmono, Hartawan and Hill, Ethan and Borovik, Andrew S. and Erko, Alexei and F{\"o}hlisch, Alexander and Mitzner, Rolf and Yachandra, Vittal K. and Yano, Junko and Wernet, Philippe and Bergmann, Uwe}, title = {X-ray absorption spectroscopy using a self-seeded soft X-ray free-electron laser}, series = {Optics express : the international electronic journal of optics}, volume = {24}, journal = {Optics express : the international electronic journal of optics}, publisher = {Optical Society of America}, address = {Washington}, issn = {1094-4087}, doi = {10.1364/OE.24.022469}, pages = {22469 -- 22480}, year = {2016}, abstract = {X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements. (C) 2016 Optical Society of America}, language = {en} } @article{MitznerRehanekKernetal.2013, author = {Mitzner, Rolf and Rehanek, Jens and Kern, Jan and Gul, Sheraz and Hattne, Johan and Taguchi, Taketo and Alonso-Mori, Roberto and Tran, Rosalie and Weniger, Christian and Schr{\"o}der, Henning and Quevedo, Wilson and Laksmono, Hartawan and Sierra, Raymond G. and Han, Guangye and Lassalle-Kaiser, Benedikt and Koroidov, Sergey and Kubicek, Katharina and Schreck, Simon and Kunnus, Kristjan and Brzhezinskaya, Maria and Firsov, Alexander and Minitti, Michael P. and Turner, Joshua J. and M{\"o}ller, Stefan and Sauter, Nicholas K. and Bogan, Michael J. and Nordlund, Dennis and Schlotter, William F. and Messinger, Johannes and Borovik, Andrew S. and Techert, Simone and de Groot, Frank M. F. and F{\"o}hlisch, Alexander and Erko, Alexei and Bergmann, Uwe and Yachandra, Vittal K. and Wernet, Philippe and Yano, Junko}, title = {L-edge x-ray absorption spectroscopy of dilute systems relevant to metalloproteins using an X-ray free-electron laser}, series = {The journal of physical chemistry letters}, volume = {4}, journal = {The journal of physical chemistry letters}, number = {21}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz401837f}, pages = {3641 -- 3647}, year = {2013}, abstract = {L-edge spectroscopy of 3d transition metals provides important electronic structure information and has been used in many fields. However, the use of this method for studying dilute aqueous systems, such as metalloenzymes, has not been prevalent because of severe radiation damage and the lack of suitable detection systems. Here we present spectra from a dilute Mn aqueous solution using a high-transmission zone-plate spectrometer at the Linac Coherent Light Source (LCLS). The spectrometer has been optimized for discriminating the Mn L-edge signal from the overwhelming 0 K-edge background that arises from water and protein itself, and the ultrashort LCLS X-ray pulses can outrun X-ray induced damage. We show that the deviations of the partial-fluorescence yield-detected spectra from the true absorption can be well modeled using the state-dependence of the fluorescence yield, and discuss implications for the application of our concept to biological samples.}, language = {en} }