@article{ArminDurrantShoaee2017, author = {Armin, Ardalan and Durrant, James R. and Shoaee, Safa}, title = {Interplay Between Triplet-, Singlet-Charge Transfer States and Free Charge Carriers Defining Bimolecular Recombination Rate Constant of Organic Solar Cells}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {121}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.7b04825}, pages = {13969 -- 13976}, year = {2017}, abstract = {Despite the myriad of organic donor:acceptor materials, only few systems have emerged in the life of organic solar cells to, exhibit considerable reduced bimolecular recombination, with respect to the random encounter rate given by the Langevin equation. Monte Carlo simulations have revealed that the rate constant of the formation of electron-hole bound states depends on the random encounter of opposite charges and is nearly given by the Langevin equation for the domain sizes relevant to efficient bulk heterojunction systems. Recently, three studies :suggested that charge transfer states dissociating much faster than their decay rate to the ground state, can result in reduced bimolecular recombination by lowering the recombination rate to the ground state as a loss pathway. A separate study identified another loss pathway and suggested that forbidden back electron transfer from triplet charge transfer states to triplet excitons is a key to achieving reduced recombination. Herein we further explain the reduced bimolecular recombination by investigating the limitations of these two proposals. By solving kinetic rate equations for a BHJ system with realistic rates, we show that both of these previously presented conditions must only be held at the same time fora system to exhibit non-Langevin behavior. We demonstrate that suppression of both of the parallel loss channels of singlet and triplet states can be achieved through increasing the dissociation rate of the charge transfer states; a crucial requirement to achieve a high charge carrier extraction efficiency.}, language = {en} } @article{ColladoFregosoHoodShoaeeetal.2017, author = {Collado-Fregoso, Elisa and Hood, Samantha N. and Shoaee, Safa and Schr{\"o}der, Bob C. and McCulloch, Iain and Kassal, Ivan and Neher, Dieter and Durrant, James R.}, title = {Intercalated vs Nonintercalated Morphologies in Donor-Acceptor Bulk Heterojunction Solar Cells: PBTTT:Fullerene Charge Generation and Recombination Revisited}, series = {The journal of physical chemistry letters}, volume = {8}, journal = {The journal of physical chemistry letters}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/acs.jpclett.7b01571}, pages = {4061 -- 4068}, year = {2017}, abstract = {In this Letter, we study the role of the donor:acceptor interface nanostructure upon charge separation and recombination in organic photovoltaic devices and blend films, using mixtures of PBTTT and two different fullerene derivatives (PC70BM and ICTA) as models for intercalated and nonintercalated morphologies, respectively. Thermodynamic simulations show that while the completely intercalated system exhibits a large free-energy barrier for charge separation, this barrier is significantly lower in the nonintercalated system and almost vanishes when energetic disorder is included in the model. Despite these differences, both femtosecond-resolved transient absorption spectroscopy (TAS) and time-delayed collection field (TDCF) exhibit extensive first-order losses in both systems, suggesting that geminate pairs are the primary product of photoexcitation. In contrast, the system that comprises a combination of fully intercalated polymer:fullerene areas and fullerene-aggregated domains (1:4 PBTTT:PC70BM) is the only one that shows slow, second-order recombination of free charges, resulting in devices with an overall higher short-circuit current and fill factor. This study therefore provides a novel consideration of the role of the interfacial nanostructure and the nature of bound charges and their impact upon charge generation and recombination.}, language = {en} }