@misc{MarksMuschHaussigetal.2018, author = {Marks, Richard G. and Musch, Sebastian and Haußig, Hans-Michael and Weiss, Aleš and Albeck-Gidron, Rachel and Sigalow, Emily and Ariel, Yaakov S. and Niculescu, Mira and Landau, David and Rageth, Nina and Ichikawa, Hiroshi and Rohland, Eva and Czendze, Oskar and Reich, Tamar Chana and Schulz, Michael Karl and Arnold, Rafael D. and Anderl, Gabriele and Gempp-Friedrich, Tilmann and Liu, Yongqiang and Battenberg, J. Friedrich and Reichert, Carmen and Riemer, Nathanael and Krah, Markus and Thulin, Mirjam}, title = {PaRDeS : Zeitschrift der Vereinigung f{\"u}r J{\"u}dische Studien = JewBus, Jewish Hindus \& other Jewish Encounters with East Asian Religions}, series = {PaRDeS}, journal = {PaRDeS}, number = {23}, editor = {Riemer, Nathanael and Albeck-Gidron, Rachel and Krah, Markus}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, isbn = {978-3-86956-418-0}, issn = {1614-6492}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402536}, year = {2018}, abstract = {PaRDeS. Zeitschrift der Vereinigung f{\"u}r J{\"u}dische Studien e.V., m{\"o}chte die fruchtbare und facettenreiche Kultur des Judentums sowie seine Ber{\"u}hrungspunkte zur Umwelt in den unterschiedlichen Bereichen dokumentieren. Daneben dient die Zeitschrift als Forum zur Positionierung der F{\"a}cher J{\"u}dische Studien und Judaistik innerhalb des wissenschaftlichen Diskurses sowie zur Diskussion ihrer historischen und gesellschaftlichen Verantwortung.}, language = {de} } @article{ZeheEhretPfisteretal.2014, author = {Zehe, E. and Ehret, U. and Pfister, L. and Blume, Theresa and Schroeder, Boris and Westhoff, M. and Jackisch, C. and Schymanski, Stanislauv J. and Weiler, M. and Schulz, K. and Allroggen, Niklas and Tronicke, Jens and van Schaik, Loes and Dietrich, Peter and Scherer, U. and Eccard, Jana and Wulfmeyer, Volker and Kleidon, Axel}, title = {HESS Opinions: From response units to functional units: a thermodynamic reinterpretation of the HRU concept to link spatial organization and functioning of intermediate scale catchments}, series = {Hydrology and earth system sciences : HESS}, volume = {18}, journal = {Hydrology and earth system sciences : HESS}, number = {11}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1027-5606}, doi = {10.5194/hess-18-4635-2014}, pages = {4635 -- 4655}, year = {2014}, abstract = {According to Dooge (1986) intermediate-scale catchments are systems of organized complexity, being too organized and yet too small to be characterized on a statistical/conceptual basis, but too large and too heterogeneous to be characterized in a deterministic manner. A key requirement for building structurally adequate models precisely for this intermediate scale is a better understanding of how different forms of spatial organization affect storage and release of water and energy. Here, we propose that a combination of the concept of hydrological response units (HRUs) and thermodynamics offers several helpful and partly novel perspectives for gaining this improved understanding. Our key idea is to define functional similarity based on similarity of the terrestrial controls of gradients and resistance terms controlling the land surface energy balance, rainfall runoff transformation, and groundwater storage and release. This might imply that functional similarity with respect to these specific forms of water release emerges at different scales, namely the small field scale, the hillslope, and the catchment scale. We thus propose three different types of "functional units" - specialized HRUs, so to speak - which behave similarly with respect to one specific form of water release and with a characteristic extent equal to one of those three scale levels. We furthermore discuss an experimental strategy based on exemplary learning and replicate experiments to identify and delineate these functional units, and as a promising strategy for characterizing the interplay and organization of water and energy fluxes across scales. We believe the thermodynamic perspective to be well suited to unmask equifinality as inherent in the equations governing water, momentum, and energy fluxes: this is because several combinations of gradients and resistance terms yield the same mass or energy flux and the terrestrial controls of gradients and resistance terms are largely independent. We propose that structurally adequate models at this scale should consequently disentangle driving gradients and resistance terms, because this optionally allow sequifinality to be partly reduced by including available observations, e. g., on driving gradients. Most importantly, the thermodynamic perspective yields an energy-centered perspective on rainfall-runoff transformation and evapotranspiration, including fundamental limits for energy fluxes associated with these processes. This might additionally reduce equifinality and opens up opportunities for testing thermodynamic optimality principles within independent predictions of rainfall-runoff or land surface energy exchange. This is pivotal to finding out whether or not spatial organization in catchments is in accordance with a fundamental organizing principle.}, language = {en} } @article{NienaberHeinzRappetal.2018, author = {Nienaber, Andr{\´e} and Heinz, Andreas and Rapp, Michael A. and Bermpohl, F. and Schulz, M. and Behrens, J. and L{\"o}hr, M.}, title = {Einfluss der Personalbesetzung auf Konflikte auf psychiatrischen Stationen}, series = {Der Nervenarzt : Organ der Deutschen Gesellschaft f{\"u}r Psychiatrie, Psychotherapie und Nervenheilkunde ; Mitteilungsblatt der Deutschen Gesellschaft f{\"u}r Neurologie}, volume = {89}, journal = {Der Nervenarzt : Organ der Deutschen Gesellschaft f{\"u}r Psychiatrie, Psychotherapie und Nervenheilkunde ; Mitteilungsblatt der Deutschen Gesellschaft f{\"u}r Neurologie}, number = {7}, publisher = {Springer}, address = {New York}, issn = {0028-2804}, doi = {10.1007/s00115-018-0521-5}, pages = {821 -- 827}, year = {2018}, abstract = {Psychiatrische Stationen sind ein wichtiges Element in der psychiatrischen Versorgung von Menschen mit akuter Eigen- oder Fremdgef{\"a}hrdung. Leider kommt es in diesem Rahmen immer wieder auch zu Aggression, Gewalt (Konflikten) sowie zur Anwendung von Zwang (Eind{\"a}mmung). Als entscheidender Faktor f{\"u}r den sachgem{\"a}ßen Umgang mit diesen Situationen wird sowohl die Quantit{\"a}t als auch die Qualit{\"a}t der Mitarbeitenden angesehen. Vor diesem Hintergrund besch{\"a}ftigt sich die vorliegende Untersuchung mit der Versorgungssituation auf akutpsychiatrischen Stationen. Die Hypothese lautet, dass sowohl die Gr{\"o}ße der akutpsychiatrischen Station als auch die Anzahl der Pflegenden einen Einfluss auf das Vorkommen konflikthafter Situationen haben. Hierf{\"u}r sind Daten in 6 Kliniken auf insgesamt 12 psychiatrischen Stationen erfasst worden. Als Erfassungsinstrument diente die Patient Staff Conflict Checklist - Shift Report (PCC-SR). Insgesamt konnten 2026 Schichten (Fr{\"u}h‑, Sp{\"a}t- und Nachtschicht) erfasst und ausgewertet werden. Die personelle Besetzung der Stationen mit Pflegepersonal variierte erheblich. Die Ergebnisse zeigen, dass sowohl die Stationsgr{\"o}ße als auch die Anzahl der Pflegepersonen auf akutpsychiatrischen Stationen einen signifikanten Einfluss auf das Vorkommen von Konflikten haben. In den Ergebnissen zeigt sich weiterhin, dass sich die Inzidenz des konflikthaften Verhaltens von Patienten sowohl im Hinblick auf die untersuchten Stationen der beteiligten Krankenh{\"a}user als auch im Hinblick auf die betrachteten Dienstzeittypen unterscheiden. Dar{\"u}ber hinaus zeigt sich, dass das Ausmaß der Schließung einer Akutstation und die Gr{\"o}ße einer Station einen negativen Einfluss auf die Inzidenz von Konflikten im station{\"a}r akutpsychiatrischen Kontext haben. Das Auftreten konflikthaften Verhaltens kann zur Fremd- oder Selbstgef{\"a}hrdung und zu einer Vielzahl deeskalierender und eind{\"a}mmender Maßnahmen f{\"u}hren. Hierf{\"u}r sind entsprechende personelle Ressourcen erforderlich.}, language = {de} } @misc{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric Pieter and Woodhouse, Jason Nicholas and Schulz, Kai Georg and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {667}, issn = {1866-8372}, doi = {10.25932/publishup-41712}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-417126}, pages = {15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} } @misc{SpillingSchulzPauletal.2016, author = {Spilling, Kristian and Schulz, Kai Georg and Paul, Allanah J. and Boxhammer, Tim and Achterberg, Eric Pieter and Hornick, Thomas and Lischka, Silke and Stuhr, Annegret and Berm{\´u}dez, Rafael and Czerny, Jan and Crawfurd, Kate and Brussaard, Corina P. D. and Grossart, Hans-Peter and Riebesell, Ulf}, title = {Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {544}, issn = {1866-8372}, doi = {10.25932/publishup-41183}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-411835}, pages = {13}, year = {2016}, abstract = {About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7\% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95\% was respired, similar to 1\% ended up in the TPC (including export), and 5-25\% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100\% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95\% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30\% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.}, language = {en} } @article{SpillingSchulzPauletal.2016, author = {Spilling, Kristian and Schulz, Kai G. and Paul, Allanah J. and Boxhammer, Tim and Achterberg, Eric Pieter and Hornick, Thomas and Lischka, Silke and Stuhr, Annegret and Bermudez, Rafael and Czerny, Jan and Crawfurd, Kate and Brussaard, Corina P. D. and Grossart, Hans-Peter and Riebesell, Ulf}, title = {Effects of ocean acidification on pelagic carbon fluxes in a mesocosm experiment}, series = {Biogeosciences}, volume = {13}, journal = {Biogeosciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-13-6081-2016}, pages = {6081 -- 6093}, year = {2016}, abstract = {About a quarter of anthropogenic CO2 emissions are currently taken up by the oceans, decreasing seawater pH. We performed a mesocosm experiment in the Baltic Sea in order to investigate the consequences of increasing CO2 levels on pelagic carbon fluxes. A gradient of different CO2 scenarios, ranging from ambient (similar to 370 mu atm) to high (similar to 1200 mu atm), were set up in mesocosm bags (similar to 55m(3)). We determined standing stocks and temporal changes of total particulate carbon (TPC), dissolved organic carbon (DOC), dissolved inorganic carbon (DIC), and particulate organic carbon (POC) of specific plankton groups. We also measured carbon flux via CO2 exchange with the atmosphere and sedimentation (export), and biological rate measurements of primary production, bacterial production, and total respiration. The experiment lasted for 44 days and was divided into three different phases (I: t0-t16; II: t17-t30; III: t31-t43). Pools of TPC, DOC, and DIC were approximately 420, 7200, and 25 200 mmol Cm-2 at the start of the experiment, and the initial CO2 additions increased the DIC pool by similar to 7\% in the highest CO2 treatment. Overall, there was a decrease in TPC and increase of DOC over the course of the experiment. The decrease in TPC was lower, and increase in DOC higher, in treatments with added CO2. During phase I the estimated gross primary production (GPP) was similar to 100 mmol C m(-2) day(-1), from which 75-95\% was respired, similar to 1\% ended up in the TPC (including export), and 5-25\% was added to the DOC pool. During phase II, the respiration loss increased to similar to 100\% of GPP at the ambient CO2 concentration, whereas respiration was lower (85-95\% of GPP) in the highest CO2 treatment. Bacterial production was similar to 30\% lower, on average, at the highest CO2 concentration than in the controls during phases II and III. This resulted in a higher accumulation of DOC and lower reduction in the TPC pool in the elevated CO2 treatments at the end of phase II extending throughout phase III. The "extra" organic carbon at high CO2 remained fixed in an increasing biomass of small-sized plankton and in the DOC pool, and did not transfer into large, sinking aggregates. Our results revealed a clear effect of increasing CO2 on the carbon budget and mineralization, in particular under nutrient limited conditions. Lower carbon loss processes (respiration and bacterial remineralization) at elevated CO2 levels resulted in higher TPC and DOC pools than ambient CO2 concentration. These results highlight the importance of addressing not only net changes in carbon standing stocks but also carbon fluxes and budgets to better disentangle the effects of ocean acidification.}, language = {en} } @article{HornickBachCrawfurdetal.2017, author = {Hornick, Thomas and Bach, Lennart T. and Crawfurd, Katharine J. and Spilling, Kristian and Achterberg, Eric P. and Woodhouse, Jason Nicholas and Schulz, Kai G. and Brussaard, Corina P. D. and Riebesell, Ulf and Grossart, Hans-Peter}, title = {Ocean acidification impacts bacteria-phytoplankton coupling at low-nutrient conditions}, series = {Biogeosciences}, volume = {14}, journal = {Biogeosciences}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1726-4170}, doi = {10.5194/bg-14-1-2017}, pages = {1 -- 15}, year = {2017}, abstract = {The oceans absorb about a quarter of the annually produced anthropogenic atmospheric carbon dioxide (CO2), resulting in a decrease in surface water pH, a process termed ocean acidification (OA). Surprisingly little is known about how OA affects the physiology of heterotrophic bacteria or the coupling of heterotrophic bacteria to phytoplankton when nutrients are limited. Previous experiments were, for the most part, undertaken during productive phases or following nutrient additions designed to stimulate algal blooms. Therefore, we performed an in situ large-volume mesocosm (similar to 55 m(3)) experiment in the Baltic Sea by simulating different fugacities of CO2 (fCO(2)) extending from present to future conditions. The study was conducted in July-August after the nominal spring bloom, in order to maintain low-nutrient conditions throughout the experiment. This resulted in phytoplankton communities dominated by small-sized functional groups (picophytoplankton). There was no consistent fCO(2)-induced effect on bacterial protein production (BPP), cell-specific BPP (csBPP) or biovolumes (BVs) of either free-living (FL) or particle-associated (PA) heterotrophic bacteria, when considered as individual components (univariate analyses). Permutational Multivariate Analysis of Variance (PERMANOVA) revealed a significant effect of the fCO(2) treatment on entire assemblages of dissolved and particulate nutrients, metabolic parameters and the bacteria-phytoplankton community. However, distance-based linear modelling only identified fCO(2) as a factor explaining the variability observed amongst the microbial community composition, but not for explaining variability within the metabolic parameters. This suggests that fCO(2) impacts on microbial metabolic parameters occurred indirectly through varying physicochemical parameters and microbial species composition. Cluster analyses examining the co-occurrence of different functional groups of bacteria and phytoplankton further revealed a separation of the four fCO(2)-treated mesocosms from both control mesocosms, indicating that complex trophic interactions might be altered in a future acidified ocean. Possible consequences for nutrient cycling and carbon export are still largely unknown, in particular in a nutrient-limited ocean.}, language = {en} }